Suppr超能文献

一种兼具高电导率和优异电化学稳定性的氟离子传导固体电解质。

A Fluoride-Ion-Conducting Solid Electrolyte with Both High Conductivity and Excellent Electrochemical Stability.

作者信息

Wang Jinzhu, Hao Jipeng, Duan Chaomin, Wang Xinchao, Wang Kai, Ma Cheng

机构信息

Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.

出版信息

Small. 2022 Feb;18(5):e2104508. doi: 10.1002/smll.202104508. Epub 2021 Nov 27.

Abstract

Solid-state fluoride-ion batteries (FIBs) circumvent multiple formidable bottlenecks of lithium-ion batteries, but their overall performance remains inferior due to the absence of appropriate solid electrolytes. Presently the conductivity of most solid electrolytes for FIBs is too low to enable room-temperature cycling, while the few sufficiently conductive ones only allow for very low discharge voltages because of the narrow electrochemical stability window (ESW). Here, high room-temperature conductivity and a decent ESW are simultaneously achieved by designing a solid electrolyte CsPb K F . Its room-temperature conductivity is 1.23 × 10  S cm , comparable to the most conductive system reported so far (PbSnF , 5.44 × 10 -1.6 × 10  S cm ), but the ESW is several times broader. With these appealing characteristics simultaneously achieved in the solid electrolyte, a cell with much higher voltages than other room-temperature-operable solid-state FIBs in literature is successfully constructed, and stably cycled at 25 °C for 4581 h without considerable capacity fade.

摘要

固态氟离子电池(FIBs)克服了锂离子电池的多个巨大瓶颈,但由于缺乏合适的固体电解质,其整体性能仍然较差。目前,大多数用于FIBs的固体电解质的电导率太低,无法实现室温循环,而少数具有足够导电性的固体电解质由于电化学稳定窗口(ESW)狭窄,只能允许非常低的放电电压。在此,通过设计一种固体电解质CsPbKF,同时实现了高室温电导率和良好的ESW。其室温电导率为1.23×10⁻³ S cm⁻¹,与目前报道的导电性最高的体系(PbSnF₆,5.44×10⁻³ - 1.6×10⁻³ S cm⁻¹)相当,但ESW要宽几倍。由于在固体电解质中同时具备了这些吸引人的特性,成功构建了一个比文献中其他室温可操作的固态FIBs具有更高电压的电池,并在25℃下稳定循环4581小时,且容量没有明显衰减。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验