Suppr超能文献

基于深度学习的图像超分辨率加速原子力显微镜表征。

Accelerating AFM Characterization via Deep-Learning-Based Image Super-Resolution.

机构信息

Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.

Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.

出版信息

Small. 2022 Jan;18(3):e2103779. doi: 10.1002/smll.202103779. Epub 2021 Nov 27.

Abstract

Atomic force microscopy (AFM) is one of the most popular imaging and characterizing methods applicable to a wide range of nanoscale material systems. However, high-resolution imaging using AFM generally suffers from a low scanning yield due to its method of raster scanning. Here, a systematic method of data acquisition and preparation combined with a deep-learning-based image super-resolution, enabling rapid AFM characterization with accuracy, is proposed. Its application to measuring the geometrical and mechanical properties of structured DNA assemblies reveals that around a tenfold reduction in AFM imaging time can be achieved without significant loss of accuracy. Through a transfer learning strategy, it can be efficiently customized for a specific target sample on demand.

摘要

原子力显微镜(AFM)是最受欢迎的成像和特性分析方法之一,适用于广泛的纳米级材料系统。然而,由于其光栅扫描的方法,使用 AFM 进行高分辨率成像通常会导致扫描效率低下。在这里,我们提出了一种系统的数据采集和准备方法,结合基于深度学习的图像超分辨率技术,实现了快速、准确的 AFM 特性分析。该方法在测量结构化 DNA 组装体的几何和机械特性方面的应用表明,在不显著降低准确性的情况下,AFM 成像时间可以减少约十倍。通过迁移学习策略,可以根据特定目标样本的需求对其进行高效定制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验