高速近场荧光显微镜与高速原子力显微镜相结合用于生物研究。

High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.

机构信息

Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

出版信息

Biochim Biophys Acta Gen Subj. 2020 Feb;1864(2):129325. doi: 10.1016/j.bbagen.2019.03.011. Epub 2019 Mar 16.

Abstract

BACKGROUND

High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.

METHODS

Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.

RESULTS

In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.

CONCLUSIONS

This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.

GENERAL SIGNIFICANCE

We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.

摘要

背景

高速原子力显微镜(HS-AFM)已成功地在蛋白质的功能活动中对各种蛋白质分子进行可视化。然而,它不能可视化与蛋白质相互作用的小分子,甚至是被包裹的蛋白质分子。因此,人们一直希望能够实现同时具有高时空分辨率和高相关准确性的光学/原子力显微镜成像技术。

方法

扫描近场光学显微镜(SNOM)是与 HS-AFM 结合的候选技术。然而,SNOM 的成像速度远远低于 HS-AFM。我们通过利用针尖扫描 HS-AFM 和探索在微小的 HS-AFM 悬臂上制造金属针尖的方法,开发了 HS-SNOM 和金属针尖增强全内反射荧光显微镜(TIRFM)。

结果

在针尖增强 TIRFM/HS-AFM 中,在相对较高浓度的体相溶液中的荧光分子存在下,演示了两种模式图像的同时视频记录。通过使用制造的金属针尖悬臂和配备有 SNOM 光学器件的我们的针尖扫描 HS-AFM 装置,我们可以进行 HS-SNOM/HS-AFM 同时成像,并促进两个重叠图像之间的相关分析。

结论

本研究实现了高时空分辨率的同时针尖增强 TIRFM/HS-AFM 和 HS-SNOM/HS-AFM 成像。尽管未来仍有一些问题需要解决,但这些相关显微镜方法有可能提高 HS-AFM 在生物研究中的多功能性。

意义

我们实现了 SNOM 成像的约 3s/帧的成像速度,比典型的 SNOM 成像速度快 100 多倍。我们还在溶液中荧光标记 DNA 的 HS-SNOM 成像中实现了约 39nm 的分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索