College of Biological Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-0821, Japan.
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
J Mol Biol. 2022 Jan 30;434(2):167371. doi: 10.1016/j.jmb.2021.167371. Epub 2021 Nov 24.
DNA methyltransferase 1 (Dnmt1) is crucial for cell maintenance and preferentially methylates hemimethylated DNA. Recently, a study revealed that Dnmt1 is timely and site-specifically activated by several types of two-mono-ubiquitinated histone H3 tails (H3Ts). However, the molecular mechanism of Dnmt1 activation has not yet been determined, in addition to the role of H3T. Based on experimental data, two-mono-ubiquitinated H3Ts activate Dnmt1 by binding, with different binding affinities. In contrast, ubiquitin molecules unlinked with H3T do not bind to Dnmt1. Despite the existence of experimental data, it is unclear why the binding affinities for Dnmt1 are different. To obtain new insights into the activation mechanism of Dnmt1, we performed all-atom molecular dynamics (MD) simulations on three systems: (1) K14/K18, (2) K14/K23 mono-ubiquitinated H3Ts, and (3) two ubiquitin molecules unlinked with H3T. As an analysis of our MD trajectories, these ubiquitylation patterns modulated ubiquitin-ubiquitin intermolecular interactions. More specifically, the intermolecular contacts between a pair of ubiquitin molecules linked with H3T became weak in the presence of H3T, indicating that H3T makes a cleft between them to inhibit their intermolecular interactions. For these three systems, the intermolecular interactions between the ubiquitin molecules calculated by our MD simulations are in good agreement with the binding affinities for Dnmt1 experimentally measured in a previous study. Therefore, we conclude that H3T acts as a spacer to inhibit ubiquitin-ubiquitin intermolecular interactions, enhancing binding to Dnmt1.
DNA 甲基转移酶 1(Dnmt1)对于细胞维持至关重要,并且优先甲基化半甲基化的 DNA。最近,一项研究表明,Dnmt1 被几种类型的双单泛素化组蛋白 H3 尾巴(H3Ts)及时且特异性地激活。然而,除了 H3T 的作用之外,Dnmt1 激活的分子机制尚未确定。基于实验数据,双单泛素化 H3Ts 通过不同的结合亲和力与 Dnmt1 结合来激活 Dnmt1。相比之下,未与 H3T 连接的泛素分子不与 Dnmt1 结合。尽管存在实验数据,但尚不清楚为什么 Dnmt1 的结合亲和力不同。为了深入了解 Dnmt1 的激活机制,我们对三个系统进行了全原子分子动力学(MD)模拟:(1)K14/K18,(2)K14/K23 单泛素化 H3Ts,以及(3)两个未与 H3T 连接的泛素分子。作为对我们 MD 轨迹的分析,这些泛素化模式调节了泛素-泛素分子间相互作用。更具体地说,在存在 H3T 的情况下,一对与 H3T 连接的泛素分子之间的分子间接触变得较弱,表明 H3T 在它们之间形成一个裂缝以抑制它们的分子间相互作用。对于这三个系统,我们的 MD 模拟计算的泛素分子之间的分子间相互作用与之前研究中实验测量的 Dnmt1 的结合亲和力非常吻合。因此,我们得出结论,H3T 作为一种间隔物,抑制了泛素-泛素分子间相互作用,增强了与 Dnmt1 的结合。