Zhu Yu, Ye Fei, Zhou Ziyun, Liu Wanlin, Liang Zhongjie, Hu Guang
Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Molecules. 2021 Aug 25;26(17):5153. doi: 10.3390/molecules26175153.
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on the modeling structures of DNMT1-ubiquitylated H3 (H3Ub)/ubiquitin specific peptidase 7 (USP7) complexes, we have used a combination of elastic network models, molecular dynamics simulations, structural residue perturbation, network modeling, and pocket pathway analysis to examine their molecular mechanisms of allosteric regulation. The comparative intrinsic and conformational dynamics analysis of three DNMT1 systems has highlighted the pivotal role of the RFTS domain as the dynamics hub in both intra- and inter-molecular interactions. The site perturbation and network modeling approaches have revealed the different and more complex allosteric interaction landscape in both DNMT1 complexes, involving the events caused by mutational hotspots and post-translation modification sites through protein-protein interactions (PPIs). Furthermore, communication pathway analysis and pocket detection have provided new mechanistic insights into molecular mechanisms underlying quaternary structures of DNMT1 complexes, suggesting potential targeting pockets for PPI-based allosteric drug design.
包括DNA甲基转移酶1(DNMT1)在内的DNA甲基转移酶(DNMTs)是一类保守的胞嘧啶甲基化酶家族,在表观遗传调控中发挥着关键作用。DNMT1的多种功能依赖于其不同相互作用伙伴之间的变构网络,这使其成为新型治疗靶点。在这项工作中,基于DNMT1-泛素化组蛋白H3(H3Ub)/泛素特异性蛋白酶7(USP7)复合物的建模结构,我们结合了弹性网络模型、分子动力学模拟、结构残基扰动、网络建模和口袋通路分析,以研究它们的变构调节分子机制。对三个DNMT1系统的比较固有动力学和构象动力学分析突出了RFTS结构域作为分子内和分子间相互作用中动力学枢纽的关键作用。位点扰动和网络建模方法揭示了两种DNMT1复合物中不同且更复杂的变构相互作用格局,涉及由突变热点和翻译后修饰位点通过蛋白质-蛋白质相互作用(PPI)引发的事件。此外,通信通路分析和口袋检测为DNMT1复合物四级结构的分子机制提供了新的机制见解,为基于PPI的变构药物设计提出了潜在的靶向口袋。