Suppr超能文献

通过DeepMind的AlphaFold2程序预测蛋白质组中铁硫(Fe-S)簇和锌(Zn)结合位点,极大地扩展了金属蛋白质组。

Identification of Iron-Sulfur (Fe-S) Cluster and Zinc (Zn) Binding Sites Within Proteomes Predicted by DeepMind's AlphaFold2 Program Dramatically Expands the Metalloproteome.

作者信息

Wehrspan Zachary J, McDonnell Robert T, Elcock Adrian H

机构信息

Department of Biochemistry, University of Iowa, Iowa City, IA, USA.

Department of Biochemistry, University of Iowa, Iowa City, IA, USA.

出版信息

J Mol Biol. 2022 Jan 30;434(2):167377. doi: 10.1016/j.jmb.2021.167377. Epub 2021 Nov 24.

Abstract

DeepMind's AlphaFold2 software has ushered in a revolution in high quality, 3D protein structure prediction. In very recent work by the DeepMind team, structure predictions have been made for entire proteomes of twenty-one organisms, with >360,000 structures made available for download. Here we show that thousands of novel binding sites for iron-sulfur (Fe-S) clusters and zinc (Zn) ions can be identified within these predicted structures by exhaustive enumeration of all potential ligand-binding orientations. We demonstrate that AlphaFold2 routinely makes highly specific predictions of ligand binding sites: for example, binding sites that are comprised exclusively of four cysteine sidechains fall into three clusters, representing binding sites for 4Fe-4S clusters, 2Fe-2S clusters, or individual Zn ions. We show further: (a) that the majority of known Fe-S cluster and Zn binding sites documented in UniProt are recovered by the AlphaFold2 structures, (b) that there are occasional disputes between AlphaFold2 and UniProt with AlphaFold2 predicting highly plausible alternative binding sites, (c) that the Fe-S cluster binding sites that we identify in E. coli agree well with previous bioinformatics predictions, (d) that cysteines predicted here to be part of ligand binding sites show little overlap with those shown via chemoproteomics techniques to be highly reactive, and (e) that AlphaFold2 occasionally appears to build erroneous disulfide bonds between cysteines that should instead coordinate a ligand. These results suggest that AlphaFold2 could be an important tool for the functional annotation of proteomes, and the methodology presented here is likely to be useful for predicting other ligand-binding sites.

摘要

DeepMind公司的AlphaFold2软件在高质量的三维蛋白质结构预测方面引发了一场革命。在DeepMind团队最近的工作中,已经对21种生物体的整个蛋白质组进行了结构预测,有超过360,000个结构可供下载。在此我们表明,通过详尽列举所有潜在的配体结合方向,可以在这些预测结构中识别出数千个铁硫(Fe-S)簇和锌(Zn)离子的新结合位点。我们证明AlphaFold2通常能对配体结合位点做出高度特异性的预测:例如,仅由四个半胱氨酸侧链组成的结合位点可分为三类,分别代表4Fe-4S簇、2Fe-2S簇或单个Zn离子的结合位点。我们进一步表明:(a)AlphaFold2结构能够找回UniProt中记录的大多数已知Fe-S簇和Zn结合位点;(b)AlphaFold2与UniProt之间偶尔存在争议,AlphaFold2会预测出高度合理的替代结合位点;(c)我们在大肠杆菌中识别出的Fe-S簇结合位点与先前的生物信息学预测结果吻合良好;(d)此处预测为配体结合位点一部分的半胱氨酸与通过化学蛋白质组学技术显示具有高反应性的半胱氨酸几乎没有重叠;(e)AlphaFold2偶尔似乎会在本应配位配体而不是形成二硫键的半胱氨酸之间构建错误的二硫键。这些结果表明,AlphaFold2可能是蛋白质组功能注释的重要工具,本文介绍的方法可能有助于预测其他配体结合位点。

相似文献

2
Molecular Mechanism of ISC Iron-Sulfur Cluster Biogenesis Revealed by High-Resolution Native Mass Spectrometry.
J Am Chem Soc. 2020 Apr 1;142(13):6018-6029. doi: 10.1021/jacs.9b11454. Epub 2020 Mar 17.
5
Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery.
J Am Chem Soc. 2014 Nov 19;136(46):16240-50. doi: 10.1021/ja507822j. Epub 2014 Nov 7.
8
Unique roles of iron and zinc binding to the yeast Fe-S cluster scaffold assembly protein "Isu1".
Metallomics. 2019 Nov 1;11(11):1820-1835. doi: 10.1039/c9mt00172g. Epub 2019 Sep 18.
10
ISCA1 Orchestrates ISCA2 and NFU1 in the Maturation of Human Mitochondrial [4Fe-4S] Proteins.
J Mol Biol. 2021 May 14;433(10):166924. doi: 10.1016/j.jmb.2021.166924. Epub 2021 Mar 10.

引用本文的文献

1
Benchmarking Zinc-Binding Site Predictors: A Comparative Analysis of Structure-Based Approaches.
J Chem Inf Model. 2025 May 26;65(10):5205-5215. doi: 10.1021/acs.jcim.5c00549. Epub 2025 May 15.
3
Using deep-learning predictions reveals a large number of register errors in PDB depositions.
IUCrJ. 2024 Nov 1;11(Pt 6):938-950. doi: 10.1107/S2052252524009114.
5
Proteomic strategies to interrogate the Fe-S proteome.
Biochim Biophys Acta Mol Cell Res. 2024 Oct;1871(7):119791. doi: 10.1016/j.bbamcr.2024.119791. Epub 2024 Jun 25.
7
Recent Progress of Protein Tertiary Structure Prediction.
Molecules. 2024 Feb 13;29(4):832. doi: 10.3390/molecules29040832.
8
Recent Advances in Metalloproteomics.
Biomolecules. 2024 Jan 13;14(1):104. doi: 10.3390/biom14010104.
9
Improving Signal and Transit Peptide Predictions Using AlphaFold2-predicted Protein Structures.
J Mol Biol. 2024 Jan 15;436(2):168393. doi: 10.1016/j.jmb.2023.168393. Epub 2023 Dec 6.

本文引用的文献

1
Monitoring Fe-S cluster occupancy across the E. coli proteome using chemoproteomics.
Nat Chem Biol. 2023 Mar;19(3):356-366. doi: 10.1038/s41589-022-01227-9. Epub 2023 Jan 12.
2
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
3
Improved prediction of protein-protein interactions using AlphaFold2.
Nat Commun. 2022 Mar 10;13(1):1265. doi: 10.1038/s41467-022-28865-w.
4
Highly accurate protein structure prediction for the human proteome.
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.
5
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
6
Machine learning differentiates enzymatic and non-enzymatic metals in proteins.
Nat Commun. 2021 Jun 17;12(1):3712. doi: 10.1038/s41467-021-24070-3.
7
Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries.
Nat Biotechnol. 2021 May;39(5):630-641. doi: 10.1038/s41587-020-00778-3. Epub 2021 Jan 4.
8
UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
9
Improved protein structure prediction using potentials from deep learning.
Nature. 2020 Jan;577(7792):706-710. doi: 10.1038/s41586-019-1923-7. Epub 2020 Jan 15.
10
On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes.
Front Microbiol. 2019 Nov 8;10:2478. doi: 10.3389/fmicb.2019.02478. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验