Suppr超能文献

遗传 CFL:聚类联邦学习中的超参数优化。

Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning.

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India.

College of Engineering, IT and Environment, Charles Darwin University, Casuarina 0909, NT, Australia.

出版信息

Comput Intell Neurosci. 2021 Nov 18;2021:7156420. doi: 10.1155/2021/7156420. eCollection 2021.

Abstract

Federated learning (FL) is a distributed model for deep learning that integrates client-server architecture, edge computing, and real-time intelligence. FL has the capability of revolutionizing machine learning (ML) but lacks in the practicality of implementation due to technological limitations, communication overhead, non-IID (independent and identically distributed) data, and privacy concerns. Training a ML model over heterogeneous non-IID data highly degrades the convergence rate and performance. The existing traditional and clustered FL algorithms exhibit two main limitations, including inefficient client training and static hyperparameter utilization. To overcome these limitations, we propose a novel hybrid algorithm, namely, genetic clustered FL (Genetic CFL), that clusters edge devices based on the training hyperparameters and genetically modifies the parameters clusterwise. Then, we introduce an algorithm that drastically increases the individual cluster accuracy by integrating the density-based clustering and genetic hyperparameter optimization. The results are bench-marked using MNIST handwritten digit dataset and the CIFAR-10 dataset. The proposed genetic CFL shows significant improvements and works well with realistic cases of non-IID and ambiguous data. An accuracy of 99.79% is observed in the MNIST dataset and 76.88% in CIFAR-10 dataset with only 10 training rounds.

摘要

联邦学习(FL)是一种将客户端-服务器架构、边缘计算和实时智能集成在一起的深度学习分布式模型。FL 有能力彻底改变机器学习(ML),但由于技术限制、通信开销、非独立同分布(IID)数据和隐私问题,在实际实施方面存在不足。在异构非 IID 数据上训练 ML 模型会极大地降低收敛速度和性能。现有的传统和聚类联邦学习算法表现出两个主要局限性,包括客户端训练效率低下和超参数利用静态。为了克服这些限制,我们提出了一种新颖的混合算法,即遗传聚类联邦学习(Genetic CFL),该算法根据训练超参数对边缘设备进行聚类,并在聚类上对参数进行遗传修改。然后,我们引入了一种算法,通过集成基于密度的聚类和遗传超参数优化,极大地提高了个体聚类的准确性。使用 MNIST 手写数字数据集和 CIFAR-10 数据集对提出的遗传 CFL 进行基准测试。在 MNIST 数据集上观察到 99.79%的准确率,在 CIFAR-10 数据集上仅用 10 个训练轮次达到 76.88%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011a/8616689/d96bdf80489e/CIN2021-7156420.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验