Suppr超能文献

一种基于遗传编程的用于温室监测与控制的最优传感器布置方法。

A genetic programming-based optimal sensor placement for greenhouse monitoring and control.

作者信息

Ajani Oladayo S, Aboyeji Esther, Mallipeddi Rammohan, Dooyum Uyeh Daniel, Ha Yushin, Park Tusan

机构信息

Department of Artificial Intelligence, School of Convergence, Kyungpook National University, Daegu, Republic of Korea.

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, United States.

出版信息

Front Plant Sci. 2023 Jun 9;14:1152036. doi: 10.3389/fpls.2023.1152036. eCollection 2023.

Abstract

Optimal sensor location methods are crucial to realize a sensor profile that achieves pre-defined performance criteria as well as minimum cost. In recent times, indoor cultivation systems have leveraged on optimal sensor location schemes for effective monitoring at minimum cost. Although the goal of monitoring in indoor cultivation system is to facilitate efficient control, most of the previously proposed methods are ill-posed as they do not approach optimal sensor location from a control perspective. Therefore in this work, a genetic programming-based optimal sensor placement for greenhouse monitoring and control is presented from a control perspective. Starting with a reference micro-climate condition (temperature and relative humidity) obtained by aggregating measurements from 56 dual sensors distributed within a greenhouse, we show that genetic programming can be used to select a minimum number of sensor locations as well as a symbolic representation of how to aggregate them to efficiently estimate the reference measurements from the 56 sensors. The results presented in terms of Pearson's correlation coefficient () and three error-related metrics demonstrate that the proposed model achieves an average of 0.999 for both temperature and humidity and an average RMSE value of 0.0822 and 0.2534 for temperate and relative humidity respectively. Conclusively, the resulting models make use of only eight (8) sensors, indicating that only eight (8) are required to facilitate the efficient monitoring and control of the greenhouse facility.

摘要

最优传感器定位方法对于实现满足预定义性能标准且成本最低的传感器配置至关重要。近年来,室内种植系统利用最优传感器定位方案,以最低成本进行有效监测。尽管室内种植系统的监测目标是促进高效控制,但大多数先前提出的方法都存在不适定问题,因为它们没有从控制角度来探讨最优传感器定位。因此,在这项工作中,从控制角度提出了一种基于遗传编程的用于温室监测与控制的最优传感器布置方法。从通过汇总分布在温室中的56个双传感器的测量值获得的参考微气候条件(温度和相对湿度)出发,我们表明遗传编程可用于选择最少数量的传感器位置,以及如何汇总这些位置以有效地从56个传感器估计参考测量值的符号表示。以皮尔逊相关系数()和三个与误差相关的指标呈现的结果表明,所提出的模型对于温度和湿度的平均相关系数均达到0.999,对于温度和相对湿度的平均均方根误差值分别为0.0822和0.2534。总之,所得模型仅使用八个(8)传感器,这表明仅需八个(8)传感器就能促进温室设施的高效监测与控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c84f/10288141/73c92c8dafb7/fpls-14-1152036-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验