Suppr超能文献

用于智能手机应用程序引导的中风分诊的简化FAST-ED算法的验证。

Validation of a shortened FAST-ED algorithm for smartphone app guided stroke triage.

作者信息

Frank Benedikt, Fabian Felix, Brune Bastian, Bozkurt Bessime, Deuschl Cornelius, Nogueira Raul G, Kleinschnitz Christoph, Köhrmann Martin

机构信息

Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany.

Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, Essen, Germany.

出版信息

Ther Adv Neurol Disord. 2021 Nov 23;14:17562864211057639. doi: 10.1177/17562864211057639. eCollection 2021.

Abstract

BACKGROUND AND PURPOSE

Large vessel occlusion (LVO) recognition scales were developed to identify patients with LVO-related acute ischemic stroke (AIS) on the scene of emergency. Thus, they may enable direct transport to a comprehensive stroke centre (CSC). In this study, we aim to validate a smartphone app-based stroke triage with a shortened form of the Field Assessment Stroke Triage for Emergency Destination (FAST-ED).

METHODS

This retrospective validation study included 2815 patients with confirmed acute stroke and suspected acute stroke but final diagnosis other than stroke (stroke mimics) who were admitted by emergency medical service (EMS) to the CSC of the Neurological University Hospital Essen, Germany. We analysed the predictive accuracy of a shortened digital app-based FAST-ED ( 'FAST-ED App') for LVO-related AIS and yield comparison to various other LVO recognition scales.

RESULTS

The shortened FAST-ED App had comparable test quality (Area under ROC = 0.887) to predict LVO-related AIS to the original FAST-ED (0.889) and RACE (0.883) and was superior to Cincinnati Prehospital Stroke Severity (CPSS), 3-Item Stroke Scale (3-ISS) and National Institute of Health Stroke Scale (NIHSS). A FAST-ED App ⩾ 4 revealed very good accuracy to detect LVO related AIS (sensitivity of 77% and a specificity 87%) with an area under the curve c-statistics of 0.89 (95% CI: 0.87-0.90). In a hypothetical triage model, the number needed to screen in order to avoid one secondary transportation in an urban setting would be five.

CONCLUSION

This validation study of a shortened FAST-ED assessment for a smartphone-app guided stroke triage yields good quality to identify patients with LVO.

摘要

背景与目的

大血管闭塞(LVO)识别量表旨在在急诊现场识别与LVO相关的急性缺血性卒中(AIS)患者。因此,它们可能有助于直接将患者转运至综合卒中中心(CSC)。在本研究中,我们旨在验证一种基于智能手机应用程序的卒中分诊方法,该方法采用简化版的现场评估卒中分诊至急诊目的地(FAST-ED)。

方法

这项回顾性验证研究纳入了2815例经急诊医疗服务(EMS)收治入德国埃森大学神经医院CSC的确诊急性卒中和疑似急性卒中但最终诊断不是卒中(卒中模拟)的患者。我们分析了基于数字应用程序的简化版FAST-ED(“FAST-ED应用程序”)对与LVO相关的AIS的预测准确性,并与其他各种LVO识别量表进行了收益比较。

结果

简化版FAST-ED应用程序预测与LVO相关的AIS的测试质量(ROC曲线下面积=0.887)与原始FAST-ED(0.889)和RACE(0.883)相当,且优于辛辛那提院前卒中严重程度量表(CPSS)、三项卒中量表(3-ISS)和美国国立卫生研究院卒中量表(NIHSS)。FAST-ED应用程序评分⩾4对检测与LVO相关的AIS具有非常好的准确性(灵敏度为77%,特异性为87%),曲线下面积c统计量为0.89(95%CI:0.87-0.90)。在一个假设的分诊模型中,在城市环境中为避免一次二次转运需要筛查的人数为5人。

结论

这项对基于智能手机应用程序指导的卒中分诊的简化版FAST-ED评估的验证研究,在识别LVO患者方面具有良好的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1800/8613889/2d0f4bd889c1/10.1177_17562864211057639-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验