Suppr超能文献

一种基于置信度的机器人阴道袖口闭合监督自主控制策略。

A Confidence-Based Supervised-Autonomous Control Strategy for Robotic Vaginal Cuff Closure.

作者信息

Kam Michael, Saeidi Hamed, Hsieh Michael H, Kang J U, Krieger Axel

机构信息

Dep. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21211, USA.

Dep. of Urology, Children's National Hospital, 111 Michigan Ave. N.W., Washington, DC 20010, USA.

出版信息

IEEE Int Conf Robot Autom. 2021 May-Jun;2021. doi: 10.1109/icra48506.2021.9561685. Epub 2021 Oct 18.

Abstract

Autonomous robotic suturing has the potential to improve surgery outcomes by leveraging accuracy, repeatability, and consistency compared to manual operations. However, achieving full autonomy in complex surgical environments is not practical and human supervision is required to guarantee safety. In this paper, we develop a confidence-based supervised autonomous suturing method to perform robotic suturing tasks via both Smart Tissue Autonomous Robot (STAR) and surgeon collaboratively with the highest possible degree of autonomy. Via the proposed method, STAR performs autonomous suturing when highly confident and otherwise asks the operator for possible assistance in suture positioning adjustments. We evaluate the accuracy of our proposed control method via robotic suturing tests on synthetic vaginal cuff tissues and compare them to the results of vaginal cuff closures performed by an experienced surgeon. Our test results indicate that by using the proposed confidence-based method, STAR can predict the success of pure autonomous suture placement with an accuracy of 94.74%. Moreover, via an additional 25% human intervention, STAR can achieve a 98.1% suture placement accuracy compared to an 85.4% accuracy of completely autonomous robotic suturing. Finally, our experiment results indicate that STAR using the proposed method achieves 1.6 times better consistency in suture spacing and 1.8 times better consistency in suture bite sizes than the manual results.

摘要

与手动操作相比,自主机器人缝合技术有潜力通过利用其准确性、可重复性和一致性来改善手术效果。然而,在复杂的手术环境中实现完全自主是不切实际的,需要人工监督以确保安全。在本文中,我们开发了一种基于置信度的监督自主缝合方法,通过智能组织自主机器人(STAR)与外科医生协作,以尽可能高的自主程度执行机器人缝合任务。通过所提出的方法,STAR在高度自信时执行自主缝合,否则会要求操作员在缝合位置调整方面提供可能的帮助。我们通过在合成阴道袖口组织上进行机器人缝合测试来评估我们提出的控制方法的准确性,并将其与经验丰富的外科医生进行阴道袖口闭合的结果进行比较。我们的测试结果表明,通过使用所提出的基于置信度的方法,STAR能够以94.74%的准确率预测纯自主缝合放置的成功率。此外,通过额外25%的人工干预,与完全自主机器人缝合85.4%的准确率相比,STAR可以实现98.1%的缝合放置准确率。最后,我们的实验结果表明,使用所提出方法的STAR在缝线间距上的一致性比手动结果好1.6倍,在缝线咬合尺寸上的一致性比手动结果好1.8倍。

相似文献

5
6
Supervised autonomous robotic soft tissue surgery.监督式自主机器人软组织手术。
Sci Transl Med. 2016 May 4;8(337):337ra64. doi: 10.1126/scitranslmed.aad9398.

引用本文的文献

本文引用的文献

5
Semi-Autonomous Laparoscopic Robotic Electro-surgery with a Novel 3D Endoscope.采用新型3D内窥镜的半自主腹腔镜机器人电外科手术
IEEE Int Conf Robot Autom. 2018 May;2018:6637-6644. doi: 10.1109/ICRA.2018.8461060. Epub 2018 Sep 13.
6
Biocompatible Near-Infrared Three-Dimensional Tracking System.生物相容性近红外三维跟踪系统
IEEE Trans Biomed Eng. 2017 Mar;64(3):549-556. doi: 10.1109/TBME.2017.2656803. Epub 2017 Jan 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验