Suppr超能文献

节俭着色的复杂性。

The complexity of frugal colouring.

作者信息

Bard Stefan, MacGillivray Gary, Redlin Shayla

机构信息

Department of Mathematics and Statistics, University of Victoria, Victoria, BC Canada.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON Canada.

出版信息

Arab J Math. 2021;10(1):51-57. doi: 10.1007/s40065-021-00311-7. Epub 2021 Jan 29.

Abstract

A - of a graph is an assignment of colours to the vertices of , such that each colour appears at most times in the neighbourhood of any vertex. A dichotomy theorem for the complexity of deciding whether a graph has a 1-frugal colouring with colours was found by McCormick and Thomas, and then later extended to restricted graph classes by Kratochvil and Siggers. We generalize the McCormick and Thomas theorem by proving a dichotomy theorem for the complexity of deciding whether a graph has a -frugal colouring with colours, for all pairs of positive integers and . We also generalize bounds of Lih et al. for the number of colours needed in a 1-frugal colouring of a given -minor-free graph with maximum degree to -frugal colourings, for any positive integer .

摘要

图(G)的(k)-节俭着色是为(G)的顶点分配颜色,使得在任何顶点的邻域中每种颜色最多出现(k)次。麦考密克(McCormick)和托马斯(Thomas)发现了关于判定一个图是否具有(k)种颜色的(1 -)节俭着色的复杂度的二分法定理,随后克拉托赫维尔(Kratochvil)和西格尔斯(Siggers)将其扩展到受限图类。我们通过证明对于所有正整数(k)和(r),判定一个图是否具有(r)种颜色的(k -)节俭着色的复杂度的二分法定理,推广了麦考密克和托马斯定理。对于任意正整数(k),我们还将李(Lih)等人给出的关于给定的最大度为(\Delta)的不含(K_{k + 1})子图的图的(1 -)节俭着色所需颜色数的界推广到(k -)节俭着色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebeb/8609890/c2b9bd8e9992/40065_2021_311_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验