State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong 516007, China.
Sci Total Environ. 2022 Feb 1;806(Pt 1):150523. doi: 10.1016/j.scitotenv.2021.150523. Epub 2021 Sep 24.
Oxygen-based membrane biofilm reactor (O-MBfR) is a unique technique for high linear alkylbenzene sulfonate (LAS)-containing greywater (GW) treatment. Despite the efficient removal of LAS, the dynamics of how it is taken up and the quantitative differentiation of adsorption and biodegradation are largely undefined. In this study, we tracked the fate of LAS, chemical oxygen demand and nitrogen in various systems: GW, GW with inactivated sludge (InAS) and GW with activated sludge (AS). We determined the distribution of biodegraded-, free-, and extracellular polymeric substances (EPS)-attached LAS, and we also developed a model to simulate all the steps. Results showed that AS exhibited high live cells proportion and microbial activity, but the opposite trend for GW and InAS. Both of nitrogen and organics could be simultaneously and efficiently removed in the AS inoculated system. The two-step model for LAS uptake and biodegradation represented the experimental results well. EPS adsorption led to the fast LAS accumulation in biofilm, and biodegradation led to the continuous removal of LAS in the system. After operated for 24 h, biodegradation and EPS accumulation of LAS were 94% and 4%, respectively, and the residual soluble LAS was lower than 1%. This work lays the foundation for using O-MBfR to treat GW and other types of wastewater, and understanding the key roles of EPS and the mathematical model of LAS removal in the system.
基于氧气的膜生物膜反应器(O-MBfR)是一种独特的高线性烷基苯磺酸盐(LAS)含灰水(GW)处理技术。尽管它能够有效地去除 LAS,但对于 LAS 的吸收动力学以及吸附和生物降解的定量区分,目前仍存在很大的不确定性。在本研究中,我们跟踪了 LAS、化学需氧量和氮在各种系统中的命运:GW、含失活污泥(InAS)的 GW 和含活性污泥(AS)的 GW。我们确定了生物降解、游离和细胞外聚合物物质(EPS)附着 LAS 的分布,并且还开发了一个模型来模拟所有步骤。结果表明,AS 表现出高活细胞比例和微生物活性,但 GW 和 InAS 则相反。在接种 AS 的系统中,氮和有机物可以同时高效去除。LAS 吸收和生物降解的两步模型很好地代表了实验结果。EPS 吸附导致生物膜中 LAS 的快速积累,而生物降解导致系统中 LAS 的持续去除。经过 24 小时运行后,LAS 的生物降解和 EPS 积累分别为 94%和 4%,剩余的可溶性 LAS 低于 1%。这项工作为使用 O-MBfR 处理 GW 和其他类型的废水以及理解 EPS 和 LAS 去除数学模型在系统中的关键作用奠定了基础。