From the Department of Neurology (H.Y.C., E.J.G., L.J.H., H.P.Z., K.N.S., N.H.P., J.A.K.), Yale University, New Haven, CT; Department of Critical Care Medicine (J.E.), University of Pittsburgh Medical Center, PA; and Department of Neurology (S.F.Z., M.G., V.M.J., E.S.R., M.B.W.), Massachusetts General Hospital, Boston.
Neurology. 2022 Feb 1;98(5):e459-e469. doi: 10.1212/WNL.0000000000013126. Epub 2021 Nov 29.
Delayed cerebral ischemia (DCI) is the leading complication of subarachnoid hemorrhage (SAH). Because DCI was traditionally thought to be caused by large vessel vasospasm, transcranial Doppler ultrasounds (TCDs) have been the standard of care. Continuous EEG has emerged as a promising complementary monitoring modality and predicts increased DCI risk. Our objective was to determine whether combining EEG and TCD data improves prediction of DCI after SAH. We hypothesize that integrating these diagnostic modalities improves DCI prediction.
We retrospectively assessed patients with moderate to severe SAH (2011-2015; Fisher 3-4 or Hunt-Hess 4-5) who had both prospective TCD and EEG acquisition during hospitalization. Middle cerebral artery (MCA) peak systolic velocities (PSVs) and the presence or absence of epileptiform abnormalities (EAs), defined as seizures, epileptiform discharges, and rhythmic/periodic activity, were recorded daily. Logistic regressions were used to identify significant covariates of EAs and TCD to predict DCI. Group-based trajectory modeling (GBTM) was used to account for changes over time by identifying distinct group trajectories of MCA PSV and EAs associated with DCI risk.
We assessed 107 patients; DCI developed in 56 (51.9%). Univariate predictors of DCI are presence of high-MCA velocity (PSV ≥200 cm/s, sensitivity 27%, specificity 89%) and EAs (sensitivity 66%, specificity 62%) on or before day 3. Two univariate GBTM trajectories of EAs predicted DCI (sensitivity 64%, specificity 62.75%). Logistic regression and GBTM models using both TCD and EEG monitoring performed better. The best logistic regression and GBTM models used both TCD and EEG data, Hunt-Hess score at admission, and aneurysm treatment as predictors of DCI (logistic regression: sensitivity 90%, specificity 70%; GBTM: sensitivity 89%, specificity 67%).
EEG and TCD biomarkers combined provide the best prediction of DCI. The conjunction of clinical variables with the timing of EAs and high MCA velocities improved model performance. These results suggest that TCD and cEEG are promising complementary monitoring modalities for DCI prediction. Our model has potential to serve as a decision support tool in SAH management.
This study provides Class II evidence that combined TCD and EEG monitoring can identify delayed cerebral ischemia after SAH.
迟发性脑缺血(DCI)是蛛网膜下腔出血(SAH)的主要并发症。由于传统上认为 DCI 是由大血管血管痉挛引起的,经颅多普勒超声(TCD)一直是标准的护理方法。连续脑电图已成为一种很有前途的补充监测方式,并可预测 DCI 风险增加。我们的目的是确定将脑电图和 TCD 数据相结合是否可以改善 SAH 后的 DCI 预测。我们假设整合这些诊断方式可以改善 DCI 的预测。
我们回顾性评估了 2011 年至 2015 年期间患有中度至重度 SAH(Fisher 3-4 或 Hunt-Hess 4-5)的患者,这些患者在住院期间都进行了前瞻性 TCD 和 EEG 采集。每天记录大脑中动脉(MCA)收缩期峰值流速(PSV)和癫痫样异常(EAs)的存在或缺失,EAs 定义为癫痫发作、癫痫样放电和节律/周期性活动。使用逻辑回归确定与 EAs 和 TCD 相关的显著协变量,以预测 DCI。使用基于群组的轨迹建模(GBTM)来识别与 DCI 风险相关的 MCA PSV 和 EAs 的不同群组轨迹,以说明随时间的变化。
我们评估了 107 例患者;56 例(51.9%)发生 DCI。DCI 的单变量预测因素包括高 MCA 速度(PSV≥200cm/s,敏感性 27%,特异性 89%)和第 3 天或之前的 EAs(敏感性 66%,特异性 62%)。两个单变量 GBTM 轨迹的 EAs 预测了 DCI(敏感性 64%,特异性 62.75%)。使用 TCD 和 EEG 监测的逻辑回归和 GBTM 模型表现更好。使用 TCD 和 EEG 数据、入院时的 Hunt-Hess 评分和动脉瘤治疗作为 DCI 预测因素的最佳逻辑回归和 GBTM 模型(逻辑回归:敏感性 90%,特异性 70%;GBTM:敏感性 89%,特异性 67%)。
脑电图和 TCD 生物标志物的结合可提供 DCI 最佳预测。临床变量与 EAs 和 MCA 高流速的时间相结合,提高了模型性能。这些结果表明,TCD 和 cEEG 是 DCI 预测的很有前途的补充监测方式。我们的模型有可能成为 SAH 管理的决策支持工具。
本研究提供了 II 级证据,表明联合 TCD 和 EEG 监测可识别 SAH 后的迟发性脑缺血。