Mohammadzadeh Ibrahim, Niroomand Behnaz, Eini Pooya, Khaledian Homayoon, Choubineh Tannaz, Luzzi Sabino
Department of Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Neuroscience Lab, Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Neurosurg Rev. 2025 Jan 7;48(1):26. doi: 10.1007/s10143-024-03175-5.
It is feasible to predict delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) using Artificial intelligence (AI) algorithms, which may offer significant improvements in early diagnosis and patient management. This systematic review and meta-analysis evaluate the efficacy of machine learning (ML) in predicting DCI, aiming to integrate complex clinical data to enhance diagnostic accuracy. We searched PubMed, Scopus, Web of science, and Embase databases without restrictions until June 2024, applying PRISMA guidelines. Out of 1498 studies screened, 10 met our eligibility criteria involving ML approaches in patients with confirmed aSAH. The studies employed various ML algorithms and reported differential ML metrics outcomes. Meta-analysis was performed on eight studies, which resulted in a pooled sensitivity of 0.79 [95% CI: 0.63-0.89], specificity of 0.78[95% CI: 0.68-0.85], positive DLR of 3.54 [95% CI: 2.22-5.64] and the negative DLR of 0.28 [95% CI: 0.15-0.52], diagnostic odds ratio of 12.82 [95% CI: 4.66-35.28], the diagnostic score of 2.55 [95% CI: 1.54-3.56], and the area under the curve (AUC) of 0.85. These findings show significant diagnostic accuracy and demonstrate the potential of ML algorithms to significantly improve the predictability of DCI, implying that ML could impart a significant role on improving clinical decision making. However, variability in methodological approaches across studies shows a need for standardization to realize the full benefits of ML in clinical settings.
使用人工智能(AI)算法预测动脉瘤性蛛网膜下腔出血(aSAH)后的迟发性脑缺血(DCI)是可行的,这可能在早期诊断和患者管理方面带来显著改善。本系统评价和荟萃分析评估了机器学习(ML)在预测DCI方面的疗效,旨在整合复杂的临床数据以提高诊断准确性。我们按照PRISMA指南,在无限制条件下检索了截至2024年6月的PubMed、Scopus、科学网和Embase数据库。在筛选的1498项研究中,有10项符合我们的纳入标准,涉及确诊aSAH患者的ML方法。这些研究采用了各种ML算法,并报告了不同的ML指标结果。对八项研究进行了荟萃分析,结果显示合并敏感度为0.79[95%CI:0.63 - 0.89],特异度为0.78[95%CI:0.68 - 0.85],阳性似然比为3.54[95%CI:2.22 - 5.64],阴性似然比为0.28[95%CI:0.15 - 0.52],诊断比值比为12.82[95%CI:4.66 - 35.28],诊断分数为2.55[95%CI:1.54 - 3.56],曲线下面积(AUC)为0.85。这些结果显示出显著的诊断准确性,并证明了ML算法在显著提高DCI预测能力方面的潜力,这意味着ML在改善临床决策方面可以发挥重要作用。然而,各研究方法学方法的差异表明,需要进行标准化以在临床环境中充分实现ML的益处。