Suppr超能文献

通过整合单细胞图谱和人类遗传学来识别全人类的疾病关键细胞类型和细胞过程。

Identifying disease-critical cell types and cellular processes across the human body by integration of single-cell profiles and human genetics.

作者信息

Jagadeesh Karthik A, Dey Kushal K, Montoro Daniel T, Mohan Rahul, Gazal Steven, Engreitz Jesse M, Xavier Ramnik J, Price Alkes L, Regev Aviv

出版信息

bioRxiv. 2021 Nov 23:2021.03.19.436212. doi: 10.1101/2021.03.19.436212.

Abstract

Genome-wide association studies (GWAS) provide a powerful means to identify loci and genes contributing to disease, but in many cases the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. Here, we introduce sc-linker, a framework for integrating single-cell RNA-seq (scRNA-seq), epigenomic maps and GWAS summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. We analyzed 1.6 million scRNA-seq profiles from 209 individuals spanning 11 tissue types and 6 disease conditions, and constructed gene programs capturing cell types, disease progression, and cellular processes both within and across cell types. We evaluated these gene programs for disease enrichment by transforming them to SNP annotations with tissue-specific epigenomic maps and computing enrichment scores across 60 diseases and complex traits (average 297K). Cell type, disease progression, and cellular process programs captured distinct heritability signals even within the same cell type, as we show in multiple complex diseases that affect the brain (Alzheimer’s disease, multiple sclerosis), colon (ulcerative colitis) and lung (asthma, idiopathic pulmonary fibrosis, severe COVID-19). The inferred disease enrichments recapitulated known biology and highlighted novel cell-disease relationships, including GABAergic neurons in major depressive disorder (MDD), a disease progression M cell program in ulcerative colitis, and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease progression immune cell type programs were associated, whereas for epithelial cells, disease progression programs were most prominent, perhaps suggesting a role in disease progression over initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.

摘要

全基因组关联研究(GWAS)为识别导致疾病的基因座和基因提供了一种强大的方法,但在许多情况下,基因赋予疾病风险所涉及的相关细胞类型/状态仍然未知。破译此类关系对于识别致病过程和开发治疗方法很重要。在这里,我们介绍了sc-linker,这是一个整合单细胞RNA测序(scRNA-seq)、表观基因组图谱和GWAS汇总统计数据的框架,以推断遗传变异影响疾病的潜在细胞类型和过程。我们分析了来自209名个体的160万个scRNA-seq图谱,这些个体涵盖11种组织类型和6种疾病状况,并构建了捕获细胞类型、疾病进展以及细胞类型内和跨细胞类型的细胞过程的基因程序。我们通过使用组织特异性表观基因组图谱将这些基因程序转化为SNP注释,并计算60种疾病和复杂性状(平均29.7万个)的富集分数,来评估这些基因程序的疾病富集情况。细胞类型、疾病进展和细胞过程程序即使在同一细胞类型内也捕获了不同的遗传力信号,正如我们在影响大脑(阿尔茨海默病、多发性硬化症)、结肠(溃疡性结肠炎)和肺(哮喘、特发性肺纤维化、重症COVID-19)的多种复杂疾病中所展示的那样。推断出的疾病富集情况概括了已知的生物学现象,并突出了新的细胞-疾病关系,包括重度抑郁症(MDD)中的GABA能神经元、溃疡性结肠炎中的疾病进展M细胞程序以及多发性硬化症中的疾病特异性补体级联过程。在自身免疫性疾病中,健康和疾病进展的免疫细胞类型程序都有关联,而对于上皮细胞,疾病进展程序最为突出,这可能表明其在疾病进展而非发病中起作用。我们的框架为识别遗传变异影响疾病的细胞类型和细胞过程提供了一种强大的方法。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验