Prosilico AB, Huddinge, Sweden.
Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
Xenobiotica. 2021 Dec;51(12):1366-1371. doi: 10.1080/00498254.2021.2011471. Epub 2021 Dec 8.
Volume of distribution at steady state (V) is an important pharmacokinetic endpoint. In this study we apply machine learning and conformal prediction for human V prediction, and make a head-to-head comparison with rat-to-man scaling, allometric scaling and the Rodgers-Lukova method on combined and data, using a test set of 105 compounds with experimentally observed V.The mean prediction error and % with <2-fold prediction error for our method were 2.4-fold and 64%, respectively. 69% of test compounds had an observed V within the prediction interval at a 70% confidence level. In comparison, 2.2-, 2.9- and 3.1-fold mean errors and 69, 64 and 61% of predictions with <2-fold error was reached with rat-to-man and allometric scaling and Rodgers-Lukova method, respectively.We conclude that our method has theoretically proven validity that was empirically confirmed, and showing predictive accuracy on par with animal models and superior to an alternative widely used -based method. The option for the user to select the level of confidence in predictions offers better guidance on how to optimise V in drug discovery applications.
稳态分布容积(V)是一个重要的药代动力学终点。在这项研究中,我们将机器学习和保形预测应用于人体 V 预测,并在综合[数据集名称]数据上与大鼠到人类比例缩放、体表面积比例缩放和 Rodgers-Lukova 方法进行了直接比较,使用了 105 种具有实验观察到 V 的化合物的测试集。对于我们的方法,平均预测误差和 <2 倍预测误差的百分比分别为 2.4 倍和 64%。在 70%置信水平下,69%的测试化合物的观察到的 V 在预测区间内。相比之下,大鼠到人类和体表面积比例缩放以及 Rodgers-Lukova 方法的平均误差分别为 2.2 倍、2.9 倍和 3.1 倍,<2 倍误差的预测百分比分别为 69%、64%和 61%。我们得出结论,我们的方法具有理论上证明的有效性,并在经验上得到了证实,其预测准确性与动物模型相当,优于另一种广泛使用的基于经验的方法。用户可以选择预测置信度的选项,这为如何在药物发现应用中优化 V 提供了更好的指导。