Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.
ACS Chem Neurosci. 2024 Aug 21;15(16):3078-3089. doi: 10.1021/acschemneuro.4c00405. Epub 2024 Aug 2.
The development of new drugs addressing serious mental health and other disorders should avoid the psychedelic experience. Analogs of psychedelic drugs can have clinical utility and are termed "psychoplastogens". These represent promising candidates for treating opioid use disorder to reduce drug dependence, with rarely reported serious adverse effects. This drug abuse cessation is linked to the induction of neuritogenesis and increased neuroplasticity, a hallmark of psychedelic molecules, such as lysergic acid diethylamine. Some, but not all psychoplastogens may act through the G-protein coupled receptor (GPCR) 5HT whereas others may display very different polypharmacology making prediction of hallucinogenic potential challenging. In the process of developing tools to help design new psychoplastogens, we have used artificial intelligence in the form of machine learning classification models for predicting psychedelic effects using a published in vitro data set from PsychLight (support vector classification (SVC), area under the curve (AUC) 0.74) and in vivo human data derived from books from Shulgin and Shulgin (SVC, AUC, 0.72) with nested five-fold cross validation. We have also explored conformal predictors with ECFP6 and electrostatic descriptors in an effort to optimize them. These models have been used to predict known 5HT agonists to assess their potential to act as psychedelics and induce hallucinations for PsychLight (SVC, AUC 0.97) and Shulgin and Shulgin (random forest, AUC 0.71). We have tested these models with head twitch data from the mouse. This predictive capability is desirable to reliably design new psychoplastogens that lack in vivo hallucinogenic potential and help assess existing and future molecules for this potential. These efforts also provide useful insights into understanding the psychedelic structure activity relationship.
新药物的开发旨在解决严重的精神健康和其他障碍问题,应避免引起迷幻体验。迷幻药物的类似物具有临床应用价值,被称为“精神塑性药物”。这些药物是治疗阿片类药物使用障碍、减少药物依赖的有前途的候选药物,很少有报道其有严重的不良反应。这种药物滥用的停止与诱导神经突生成和增加神经可塑性有关,这是迷幻分子的一个标志,如麦角酸二乙胺。一些(但不是全部)精神塑性药物可能通过 G 蛋白偶联受体(GPCR)5HT 起作用,而其他药物可能表现出非常不同的多药理学特性,这使得预测致幻潜力具有挑战性。在开发有助于设计新精神塑性药物的工具的过程中,我们使用了人工智能形式的机器学习分类模型,根据 PsychLight 的已发表的体外数据集(支持向量分类(SVC),曲线下面积(AUC)0.74)和 Shulgin 和 Shulgin 的体内人类数据(SVC,AUC,0.72),使用嵌套五重交叉验证来预测迷幻效应。我们还探索了使用 ECFP6 和静电描述符的保形预测器,以努力优化它们。这些模型用于预测已知的 5HT 激动剂,以评估它们作为迷幻剂的潜力,并诱导 PsychLight(SVC,AUC 0.97)和 Shulgin 和 Shulgin(随机森林,AUC 0.71)的幻觉。我们已经在小鼠的头部抽搐数据上测试了这些模型。这种预测能力是可靠设计缺乏体内致幻潜力的新型精神塑性药物所必需的,并有助于评估现有和未来分子的这种潜力。这些努力还为理解迷幻的结构-活性关系提供了有用的见解。