Suppr超能文献

仿生刻蚀聚合物纳米通道:用于分析物检测的稳态生物传感器。

Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes.

机构信息

College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China.

Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

出版信息

ACS Nano. 2021 Dec 28;15(12):18974-19013. doi: 10.1021/acsnano.1c08582. Epub 2021 Nov 30.

Abstract

Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.

摘要

基于生物启发的聚合物纳米通道(也称为纳米孔)的生物传感器由于其可控的通道尺寸和形状、多功能表面化学、独特的离子传输特性以及良好的稳定性,在应用方面引起了相当大的关注。已经有很多关于基于固态人工纳米通道的生物传感器的最新发展的非常有信息量的综述,然而,这些综述主要集中在基于电阻脉冲传感的传感器,用于实际应用。基于稳态传感的纳米通道生物传感器,在原理上,在灵敏度、快速响应、无尺寸限制的目标分析物以及广泛的适用范围等方面具有显著优势。此外,在各种材料中,基于聚合物材料的纳米通道表现出色,因为它们具有灵活的制造和广泛的应用。本综述总结了生物启发型聚合物纳米通道作为生物传感器在检测生物体内重要分析物方面的最新进展,以满足对高性能生物传感器分析目标分析物的高需求,以及开发智能传感设备的潜力。未来的研究重点可以放在稳态或电阻脉冲纳米通道传感器领域的传输机制上,以及开发精确尺寸控制、稳健、微型、可重复使用、多功能和高通量的生物传感器,用于实际应用。未来的研究应致力于更深入地了解分子水平的原理,并将这些不同的孔结构整合到同质且无缺陷的多通道膜系统中。随着纳米科学和生物技术的快速发展,我们相信在不久的将来,基于纳米通道的生物传感器将会取得更多的成就,为人们提供更好的服务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验