Liao Yongbin, Zhu Hongyuan, Zhang Yanggang, Ye Chuangguan, Chen Tao, Fan Jiayuan
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):10159-10170. doi: 10.1109/TPAMI.2021.3131120. Epub 2022 Nov 7.
Point cloud instance segmentation has achieved huge progress with the emergence of deep learning. However, these methods are usually data-hungry with expensive and time-consuming dense point cloud annotations. To alleviate the annotation cost, unlabeled or weakly labeled data is still less explored in the task. In this paper, we introduce the first semi-supervised point cloud instance segmentation framework (SPIB) using both labeled and unlabelled bounding boxes as supervision. To be specific, our SPIB architecture involves a two-stage learning procedure. For stage one, a bounding box proposal generation network is trained under a semi-supervised setting with perturbation consistency regularization (SPCR). The regularization works by enforcing an invariance of the bounding box predictions over different perturbations applied to the input point clouds, to provide self-supervision for network learning. For stage two, the bounding box proposals with SPCR are grouped into some subsets, and the instance masks are mined inside each subset with a novel semantic propagation module and a property consistency graph module. Moreover, we introduce a novel occupancy ratio guided refinement module to refine the instance masks. Extensive experiments on the challenging ScanNet v2 dataset demonstrate our method can achieve competitive performance compared with the recent fully-supervised methods.
随着深度学习的出现,点云实例分割取得了巨大进展。然而,这些方法通常对数据需求大,需要昂贵且耗时的密集点云标注。为了减轻标注成本,在该任务中对未标注或弱标注数据的探索仍较少。在本文中,我们引入了首个半监督点云实例分割框架(SPIB),它使用标注和未标注的边界框作为监督。具体而言,我们的SPIB架构涉及一个两阶段学习过程。对于第一阶段,在半监督设置下使用扰动一致性正则化(SPCR)训练一个边界框提议生成网络。该正则化通过强制边界框预测在应用于输入点云的不同扰动上保持不变来起作用,为网络学习提供自监督。对于第二阶段,将带有SPCR的边界框提议分组为一些子集,并使用一个新颖的语义传播模块和一个属性一致性图模块在每个子集中挖掘实例掩码。此外,我们引入了一个新颖的占有率引导细化模块来细化实例掩码。在具有挑战性的ScanNet v2数据集上进行的大量实验表明,与最近的全监督方法相比,我们的方法能够实现有竞争力的性能。