Suppr超能文献

一种用于医学图像分割的高效半监督框架,具有多任务和课程学习。

An Efficient Semi-Supervised Framework with Multi-Task and Curriculum Learning for Medical Image Segmentation.

机构信息

College of Computer Science, Sichuan University, Section 1, Southern 1st Ring Rd, Chengdu, Sichuan 610065, P. R. China.

出版信息

Int J Neural Syst. 2022 Sep;32(9):2250043. doi: 10.1142/S0129065722500435. Epub 2022 Jul 30.

Abstract

A practical problem in supervised deep learning for medical image segmentation is the lack of labeled data which is expensive and time-consuming to acquire. In contrast, there is a considerable amount of unlabeled data available in the clinic. To make better use of the unlabeled data and improve the generalization on limited labeled data, in this paper, a novel semi-supervised segmentation method via multi-task curriculum learning is presented. Here, curriculum learning means that when training the network, simpler knowledge is preferentially learned to assist the learning of more difficult knowledge. Concretely, our framework consists of a main segmentation task and two auxiliary tasks, i.e. the feature regression task and target detection task. The two auxiliary tasks predict some relatively simpler image-level attributes and bounding boxes as the pseudo labels for the main segmentation task, enforcing the pixel-level segmentation result to match the distribution of these pseudo labels. In addition, to solve the problem of class imbalance in the images, a bounding-box-based attention (BBA) module is embedded, enabling the segmentation network to concern more about the target region rather than the background. Furthermore, to alleviate the adverse effects caused by the possible deviation of pseudo labels, error tolerance mechanisms are also adopted in the auxiliary tasks, including inequality constraint and bounding-box amplification. Our method is validated on ACDC2017 and PROMISE12 datasets. Experimental results demonstrate that compared with the full supervision method and state-of-the-art semi-supervised methods, our method yields a much better segmentation performance on a small labeled dataset. Code is available at https://github.com/DeepMedLab/MTCL.

摘要

在医学图像分割的监督深度学习中,一个实际问题是缺乏标记数据,而获取标记数据既昂贵又耗时。相比之下,临床中存在大量未标记的数据。为了更好地利用未标记数据并提高在有限标记数据上的泛化能力,本文提出了一种新颖的基于多任务课程学习的半监督分割方法。这里,课程学习意味着在训练网络时,优先学习更简单的知识,以帮助学习更困难的知识。具体来说,我们的框架由一个主要分割任务和两个辅助任务组成,即特征回归任务和目标检测任务。这两个辅助任务预测一些相对简单的图像级属性和边界框作为主分割任务的伪标签,迫使像素级分割结果与这些伪标签的分布匹配。此外,为了解决图像中类不平衡的问题,嵌入了基于边界框的注意力(BBA)模块,使分割网络更关注目标区域而不是背景。此外,为了减轻伪标签可能产生的偏差的不利影响,辅助任务中还采用了容错机制,包括不等式约束和边界框放大。我们的方法在 ACDC2017 和 PROMISE12 数据集上进行了验证。实验结果表明,与全监督方法和最先进的半监督方法相比,我们的方法在小标记数据集上实现了更好的分割性能。代码可在 https://github.com/DeepMedLab/MTCL 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验