Mu Pan, Liu Zhu, Liu Yaohua, Liu Risheng, Fan Xin
IEEE Trans Image Process. 2022;31:239-250. doi: 10.1109/TIP.2021.3128327. Epub 2021 Dec 7.
Video deraining is an important issue for outdoor vision systems and has been investigated extensively. However, designing optimal architectures by the aggregating model formation and data distribution is a challenging task for video deraining. In this paper, we develop a model-guided triple-level optimization framework to deduce network architecture with cooperating optimization and auto-searching mechanism, named Triple-level Model Inferred Cooperating Searching (TMICS), for dealing with various video rain circumstances. In particular, to mitigate the problem that existing methods cannot cover various rain streaks distribution, we first design a hyper-parameter optimization model about task variable and hyper-parameter. Based on the proposed optimization model, we design a collaborative structure for video deraining. This structure includes Dominant Network Architecture (DNA) and Companionate Network Architecture (CNA) that is cooperated by introducing an Attention-based Averaging Scheme (AAS). To better explore inter-frame information from videos, we introduce a macroscopic structure searching scheme that searches from Optical Flow Module (OFM) and Temporal Grouping Module (TGM) to help restore latent frame. In addition, we apply the differentiable neural architecture searching from a compact candidate set of task-specific operations to discover desirable rain streaks removal architectures automatically. Extensive experiments on various datasets demonstrate that our model shows significant improvements in fidelity and temporal consistency over the state-of-the-art works. Source code is available at https://github.com/vis-opt-group/TMICS.
视频去雨是户外视觉系统的一个重要问题,并且已经得到了广泛研究。然而,通过聚合模型形成和数据分布来设计最优架构对于视频去雨来说是一项具有挑战性的任务。在本文中,我们开发了一个模型引导的三级优化框架,以通过协作优化和自动搜索机制推导网络架构,名为三级模型推断协作搜索(TMICS),用于处理各种视频降雨情况。特别是,为了缓解现有方法无法涵盖各种雨线分布的问题,我们首先设计了一个关于任务变量和超参数的超参数优化模型。基于所提出的优化模型,我们设计了一种用于视频去雨的协作结构。这种结构包括主导网络架构(DNA)和伴随网络架构(CNA),它们通过引入基于注意力的平均方案(AAS)进行协作。为了更好地探索视频中的帧间信息,我们引入了一种宏观结构搜索方案,该方案从光流模块(OFM)和时间分组模块(TGM)进行搜索,以帮助恢复潜在帧。此外,我们从紧凑的特定任务操作候选集中应用可微神经架构搜索,以自动发现理想的雨线去除架构。在各种数据集上进行的大量实验表明,我们的模型在保真度和时间一致性方面比现有技术有显著改进。源代码可在https://github.com/vis-opt-group/TMICS获取。