Suppr超能文献

条件变分图像去雨

Conditional Variational Image Deraining.

作者信息

Du Yingjun, Xu Jun, Zhen Xiantong, Cheng Ming-Ming, Shao Ling

出版信息

IEEE Trans Image Process. 2020 May 1. doi: 10.1109/TIP.2020.2990606.

Abstract

Image deraining is an important yet challenging image processing task. Though deterministic image deraining methods are developed with encouraging performance, they are infeasible to learn flexible representations for probabilistic inference and diverse predictions. Besides, rain intensity varies both in spatial locations and across color channels, making this task more difficult. In this paper, we propose a Conditional Variational Image Deraining (CVID) network for better deraining performance, leveraging the exclusive generative ability of Conditional Variational Auto-Encoder (CVAE) on providing diverse predictions for the rainy image. To perform spatially adaptive deraining, we propose a spatial density estimation (SDE) module to estimate a rain density map for each image. Since rain density varies across different color channels, we also propose a channel-wise (CW) deraining scheme. Experiments on synthesized and real-world datasets show that the proposed CVID network achieves much better performance than previous deterministic methods on image deraining. Extensive ablation studies validate the effectiveness of the proposed SDE module and CW scheme in our CVID network. The code is available at https://github.com/Yingjun-Du/VID.

摘要

图像去雨是一项重要但具有挑战性的图像处理任务。尽管确定性图像去雨方法已被开发出来并具有令人鼓舞的性能,但它们难以学习用于概率推理和多样化预测的灵活表示。此外,降雨强度在空间位置和颜色通道上都有所不同,这使得该任务更加困难。在本文中,我们提出了一种条件变分图像去雨(CVID)网络,以实现更好的去雨性能,利用条件变分自动编码器(CVAE)在为降雨图像提供多样化预测方面的独特生成能力。为了执行空间自适应去雨,我们提出了一种空间密度估计(SDE)模块来估计每个图像的降雨密度图。由于降雨密度在不同颜色通道上有所不同,我们还提出了一种逐通道(CW)去雨方案。在合成数据集和真实世界数据集上的实验表明,所提出的CVID网络在图像去雨方面比以前的确定性方法取得了更好的性能。广泛的消融研究验证了我们CVID网络中所提出的SDE模块和CW方案的有效性。代码可在https://github.com/Yingjun-Du/VID获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验