Suppr超能文献

无雨与残留携手共进:用于实时图像去雨的渐进耦合网络。

Rain-Free and Residue Hand-in-Hand: A Progressive Coupled Network for Real-Time Image Deraining.

作者信息

Jiang Kui, Wang Zhongyuan, Yi Peng, Chen Chen, Wang Zheng, Wang Xiao, Jiang Junjun, Lin Chia-Wen

出版信息

IEEE Trans Image Process. 2021;30:7404-7418. doi: 10.1109/TIP.2021.3102504. Epub 2021 Aug 27.

Abstract

Rainy weather is a challenge for many vision-oriented tasks (e.g., object detection and segmentation), which causes performance degradation. Image deraining is an effective solution to avoid performance drop of downstream vision tasks. However, most existing deraining methods either fail to produce satisfactory restoration results or cost too much computation. In this work, considering both effectiveness and efficiency of image deraining, we propose a progressive coupled network (PCNet) to well separate rain streaks while preserving rain-free details. To this end, we investigate the blending correlations between them and particularly devise a novel coupled representation module (CRM) to learn the joint features and the blending correlations. By cascading multiple CRMs, PCNet extracts the hierarchical features of multi-scale rain streaks, and separates the rain-free content and rain streaks progressively. To promote computation efficiency, we employ depth-wise separable convolutions and a U-shaped structure, and construct CRM in an asymmetric architecture to reduce model parameters and memory footprint. Extensive experiments are conducted to evaluate the efficacy of the proposed PCNet in two aspects: (1) image deraining on several synthetic and real-world rain datasets and (2) joint image deraining and downstream vision tasks (e.g., object detection and segmentation). Furthermore, we show that the proposed CRM can be easily adopted to similar image restoration tasks including image dehazing and low-light enhancement with competitive performance. The source code is available at https://github.com/kuijiang0802/PCNet.

摘要

雨天对许多面向视觉的任务(如目标检测和分割)来说是一项挑战,会导致性能下降。图像去雨是避免下游视觉任务性能下降的有效解决方案。然而,大多数现有的去雨方法要么无法产生令人满意的恢复结果,要么计算成本过高。在这项工作中,考虑到图像去雨的有效性和效率,我们提出了一种渐进耦合网络(PCNet),以在保留无雨细节的同时很好地分离雨线。为此,我们研究了它们之间的混合相关性,并特别设计了一种新颖的耦合表示模块(CRM)来学习联合特征和混合相关性。通过级联多个CRM,PCNet提取多尺度雨线的分层特征,并逐步分离无雨内容和雨线。为了提高计算效率,我们采用深度可分离卷积和U形结构,并以非对称架构构建CRM以减少模型参数和内存占用。进行了广泛的实验,从两个方面评估所提出的PCNet的有效性:(1)在几个合成和真实世界雨数据集上进行图像去雨,以及(2)联合图像去雨和下游视觉任务(如目标检测和分割)。此外,我们表明所提出的CRM可以很容易地应用于类似的图像恢复任务,包括图像去雾和低光增强,且具有有竞争力的性能。源代码可在https://github.com/kuijiang0802/PCNet获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验