Suppr超能文献

图像预处理方法对慢性阻塞性肺疾病计算机断层扫描影像组学特征的影响

Impact of image pre-processing methods on computed tomography radiomics features in chronic obstructive pulmonary disease.

作者信息

Au Ryan C, Tan Wan C, Bourbeau Jean, Hogg James C, Kirby Miranda

机构信息

Department of Physics, Ryerson University, Toronto, ON, M5B 2K3, Canada.

Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

出版信息

Phys Med Biol. 2021 Dec 14;66(24). doi: 10.1088/1361-6560/ac3eac.

Abstract

Computed tomography (CT) imaging texture-based radiomics analysis can be used to assess chronic obstructive pulmonary disease (COPD). However, different image pre-processing methods are commonly used, and how these different methods impact radiomics features and lung disease assessment, is unknown. The purpose of this study was to develop an image pre-processing pipeline to investigate how various pre-processing combinations impact radiomics features and their use for COPD assessment. Spirometry and CT images were obtained from the multi-centered Canadian Cohort of Obstructive Lung Disease study. Participants were divided based on assessment site and were further dichotomized as No COPD or COPD within their participant groups. An image pre-processing pipeline was developed, calculating 32 grey level co-occurrence matrix radiomics features. The pipeline included lung segmentation, airway segmentation or no segmentation, image resampling or no resampling, and either no pre-processing, binning, edgmentation, or thresholding pre-processing techniques. A three-way analysis of variance was used for method comparison. A nested 10-fold cross validation using logistic regression and multiple linear regression models were constructed to classify COPD and assess correlation with lung function, respectively. Logistic regression performance was evaluated using the area under the receiver operating characteristic curve (AUC). A total of 1210 participants (Sites 1-8: No COPD: = 447, COPD: = 413; and Site 9: No COPD: = 155, COPD: = 195) were evaluated. Between the two participant groups, at least 16/32 features were different between airway segmentation/no segmentation ( ≤ 0.04), at least 29/32 features were different between no resampling/resampling ( ≤ 0.04), and 32/32 features were different between the pre-processing techniques ( < 0.0001). Features generated using the resampling/edgmentation and resampling/thresholding pre-processing combinations, regardless of airway segmentation, performed the best in COPD classification (AUC ≥ 0.718), and explained the most variance with lung function ( ≥ 0.353). Therefore, the image pre-processing methods completed prior to CT radiomics feature extraction significantly impacted extracted features and their ability to assess COPD.

摘要

基于计算机断层扫描(CT)成像纹理的放射组学分析可用于评估慢性阻塞性肺疾病(COPD)。然而,常用的图像预处理方法各不相同,而这些不同方法如何影响放射组学特征和肺部疾病评估尚不清楚。本研究的目的是开发一种图像预处理流程,以研究各种预处理组合如何影响放射组学特征及其在COPD评估中的应用。肺活量测定和CT图像取自多中心加拿大阻塞性肺疾病队列研究。参与者根据评估地点进行分组,并在其参与者组内进一步分为非COPD组或COPD组。开发了一种图像预处理流程,计算32个灰度共生矩阵放射组学特征。该流程包括肺分割、气道分割或不分割、图像重采样或不重采样,以及不进行预处理、分箱、边缘检测或阈值化预处理技术。采用三因素方差分析进行方法比较。构建了使用逻辑回归和多元线性回归模型的嵌套10倍交叉验证,分别用于COPD分类和评估与肺功能的相关性。使用受试者操作特征曲线下面积(AUC)评估逻辑回归性能。共评估了1210名参与者(第1 - 8站点:非COPD组 = 447,COPD组 = 413;第9站点:非COPD组 = 155,COPD组 = 195)。在两组参与者之间,气道分割/不分割之间至少有16/32个特征不同(P≤0.04),不重采样/重采样之间至少有29/32个特征不同(P≤0.04),预处理技术之间32/32个特征均不同(P<0.0001)。无论气道分割如何,使用重采样/边缘检测和重采样/阈值化预处理组合生成的特征在COPD分类中表现最佳(AUC≥0.718),并且与肺功能的相关性最强(R≥¬0.353)。因此,在CT放射组学特征提取之前完成的图像预处理方法显著影响提取的特征及其评估COPD的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验