Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China.
Institute of Molecular Physiology, Shenzhen Bay Laboratory, 518000, Shenzhen, Guangdong, China.
Exp Mol Med. 2021 Nov;53(11):1792-1806. doi: 10.1038/s12276-021-00700-0. Epub 2021 Nov 30.
In vitro fertilization (IVF) increases the risk of tumorigenesis in offspring. The increased oxidative damage during IVF may be involved in tumor formation. However, the molecular mechanisms underlying this phenomenon remain largely unclear. Using a well-established model of oxidatively damaged IVF mouse embryos, we applied the iTRAQ method to identify proteins differentially expressed between control and oxidatively damaged zygotes and explored the possible tumorigenic mechanisms, especially with regard to the effects of oxidative damage on ribosome biogenesis closely related to tumorigenesis. The iTRAQ results revealed that ribosomal proteins were upregulated by oxidative stress through the Nucleolin/β-Catenin/n-Myc pathway, which stimulated ribosomes to synthesize an abundance of repair proteins to correct the damaged DNA/chromosomes in IVF-derived embryos. However, the increased percentages of γH2AX-positive cells and apoptotic cells in the blastocyst suggested that DNA repair was insufficient, resulting in aberrant ribosome biogenesis. Overexpression of ribosomal proteins, particularly Rpl15, which gradually increased from the 1-cell to 8-cell stages, indicated persistent hyperactivation of ribosome biogenesis, which promoted tumorigenesis in offspring derived from oxidatively damaged IVF embryos by selectively enhancing the translation of β-Catenin and TGF-β1. The antioxidant epigallocatechin-3-gallate (EGCG) was added to the in vitro culture medium to protect embryos from oxidative damage, and the expression of ribosome-/tumor-related proteins returned to normal after EGCG treatment. This study suggests that regulation of ribosome biogenesis by EGCG may be a means of preventing tumor formation in human IVF-derived offspring, providing a scientific basis for optimizing in vitro culture conditions and improving human-assisted reproductive technology.
体外受精 (IVF) 增加了后代发生肿瘤的风险。IVF 过程中氧化损伤的增加可能与肿瘤形成有关。然而,这种现象的分子机制在很大程度上仍不清楚。本研究使用建立良好的氧化损伤 IVF 小鼠胚胎模型,应用 iTRAQ 方法鉴定了对照组和氧化损伤组胚胎之间差异表达的蛋白质,并探讨了可能的致瘤机制,特别是氧化损伤对与肿瘤发生密切相关的核糖体生物发生的影响。iTRAQ 结果表明,核仁蛋白/β-连环蛋白/n-Myc 通路通过氧化应激上调核糖体蛋白,从而刺激核糖体合成大量修复蛋白,以纠正 IVF 胚胎中受损的 DNA/染色体。然而,囊胚中 γH2AX 阳性细胞和凋亡细胞的比例增加表明 DNA 修复不足,导致核糖体生物发生异常。核糖体蛋白,特别是从 1 细胞期到 8 细胞期逐渐增加的 Rpl15 的过度表达,表明核糖体生物发生持续过度激活,通过选择性增强β-连环蛋白和 TGF-β1 的翻译,促进了氧化损伤 IVF 胚胎来源的后代发生肿瘤。在体外培养物中添加抗氧化剂表没食子儿茶素没食子酸酯 (EGCG) 可保护胚胎免受氧化损伤,EGCG 处理后核糖体/肿瘤相关蛋白的表达恢复正常。本研究表明,EGCG 对核糖体生物发生的调节可能是预防人类 IVF 后代肿瘤形成的一种手段,为优化体外培养条件和提高人类辅助生殖技术提供了科学依据。