Hellmann Robert, Harvey Allan H
Institut für Thermodynamik, Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany.
Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, U.S.A.
J Geophys Res Planets. 2021 Apr;126(4). doi: 10.1029/2021je006857.
Recent work used the kinetic theory of molecular gases, along with state-of-the-art intermolecular potentials, to calculate from first principles the diffusivity ratios necessary for modeling kinetic fractionation of water isotopes in air. Here, we extend that work to the Martian atmosphere, employing potential-energy surfaces for the interaction of water with carbon dioxide and with nitrogen. We also derive diffusivity ratios for methane isotopes in the atmosphere of Titan by using a high-quality potential for the methane-nitrogen pair. The Mars calculations cover 100 K to 400 K, while the Titan calculations cover 50 K to 200 K. Surprisingly, the simple hard-sphere theory that is inaccurate for Earth's atmosphere is in good agreement with the rigorous results for the diffusion of water isotopes in the Martian atmosphere. A modest disagreement with the hard-sphere results is observed for the diffusivity ratio of CHD in the atmosphere of Titan. We present temperature-dependent correlations, as well as estimates of uncertainty, for the diffusivity ratios involving HDO, H O, and H O in the Martian atmosphere, and for CHD and CH in the atmosphere of Titan, providing for the first time the necessary data to be able to model kinetic isotope fractionation in these environments.
近期的研究工作运用了分子气体动力学理论以及最先进的分子间势能,从第一性原理出发计算出了模拟空气中水同位素动力学分馏所需的扩散率比值。在此,我们将这项工作扩展到火星大气,采用了水与二氧化碳以及水与氮气相互作用的势能面。我们还通过使用甲烷 - 氮气对的高质量势能,推导出了土卫六大气中甲烷同位素的扩散率比值。火星的计算涵盖了100K至400K的温度范围,而土卫六的计算涵盖了50K至200K的温度范围。令人惊讶的是,对于地球大气不准确的简单硬球理论,与火星大气中水同位素扩散的严格结果吻合良好。在土卫六大气中CHD的扩散率比值方面,观察到与硬球结果存在适度差异。我们给出了火星大气中涉及HDO、H₂O和H₂¹⁸O以及土卫六大气中CHD和CH₄的扩散率比值随温度变化的相关性以及不确定性估计,首次提供了能够模拟这些环境中动力学同位素分馏所需的数据。