Cramer Hanna H, Ye Shengfa, Neese Frank, Werlé Christophe, Leitner Walter
Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany.
JACS Au. 2021 Oct 4;1(11):2058-2069. doi: 10.1021/jacsau.1c00350. eCollection 2021 Nov 22.
The selective hydrosilylation of carbon dioxide (CO) to either the formic acid, formaldehyde, or methanol level using a molecular cobalt(II) triazine complex can be controlled based on reaction parameters such as temperature, CO pressure, and concentration. Here, we rationalize the catalytic mechanism that enables the selective arrival at each product platform. Key reactive intermediates were prepared and spectroscopically characterized, while the catalytic mechanism and the energy profile were analyzed with density functional theory (DFT) methods and microkinetic modeling. It transpired that the stepwise reduction of CO involves three consecutive catalytic cycles, including the same cobalt(I) triazine hydride complex as the active species. The increasing kinetic barriers associated with each reduction step and the competing hydride transfer steps in the three cycles corroborate the strong influence of the catalyst environment on the product selectivity. The fundamental mechanistic insights provide a consistent description of the catalytic system and rationalize, in particular, the experimentally verified opportunity to steer the reaction toward the formaldehyde product as the chemically most challenging reduction level.
使用分子钴(II)三嗪配合物将二氧化碳(CO₂)选择性氢硅化至甲酸、甲醛或甲醇水平,可以根据温度、CO₂压力和浓度等反应参数进行控制。在此,我们阐明了能够选择性到达每个产物平台的催化机理。制备了关键反应中间体并进行了光谱表征,同时用密度泛函理论(DFT)方法和微观动力学模型分析了催化机理和能量分布。结果表明,CO₂的逐步还原涉及三个连续的催化循环,其中相同的钴(I)三嗪氢化物配合物作为活性物种。三个循环中与每个还原步骤相关的动力学障碍增加以及竞争性氢化物转移步骤,证实了催化剂环境对产物选择性的强烈影响。这些基本的机理见解提供了对催化体系的一致描述,尤其合理化了通过实验验证的将反应导向甲醛产物这一化学上最具挑战性的还原水平的机会。