Suppr超能文献

VFDB 2022:细菌毒力因子的通用分类方案。

VFDB 2022: a general classification scheme for bacterial virulence factors.

机构信息

NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.

出版信息

Nucleic Acids Res. 2022 Jan 7;50(D1):D912-D917. doi: 10.1093/nar/gkab1107.

Abstract

The virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/) is dedicated to presenting a comprehensive knowledge base and a versatile analysis platform for bacterial virulence factors (VFs). Recent developments in sequencing technologies have led to increasing demands to analyze potential VFs within microbiome data that always consist of many different bacteria. Nevertheless, the current classification of VFs from various pathogens is based on different schemes, which create a chaotic situation and form a barrier for the easy application of the VFDB dataset for future panbacterial metagenomic analyses. Therefore, based on extensive literature mining, we recently proposed a general category of bacterial VFs in the database and reorganized the VFDB dataset accordingly. Thus, all known bacterial VFs from 32 genera of common bacterial pathogens collected in the VFDB are well grouped into 14 basal categories along with over 100 subcategories in a hierarchical architecture. The new coherent and well-defined VFDB dataset will be feasible and applicable for future panbacterial analysis in terms of virulence factors. In addition, we introduced a redesigned JavaScript-independent web interface for the VFDB website to make the database readily accessible to all users with various client settings worldwide.

摘要

毒力因子数据库(VFDB,http://www.mgc.ac.cn/VFs/)致力于为细菌毒力因子(VF)提供一个全面的知识库和多功能的分析平台。测序技术的最新发展导致人们对分析微生物组数据中潜在毒力因子的需求不断增加,而这些数据通常包含许多不同的细菌。然而,目前来自不同病原体的毒力因子的分类是基于不同的方案,这造成了混乱的局面,并为未来泛细菌宏基因组分析中轻松应用 VFDB 数据集形成了障碍。因此,基于广泛的文献挖掘,我们最近在数据库中提出了一种细菌毒力因子的通用类别,并相应地重新组织了 VFDB 数据集。因此,所有已知的来自 32 个常见细菌病原体属的细菌毒力因子都被很好地分为 14 个基本类别,以及 100 多个层次结构中的子类别。新的一致且明确定义的 VFDB 数据集将在毒力因子方面为未来的泛细菌分析提供可行性和适用性。此外,我们为 VFDB 网站引入了一个重新设计的独立于 JavaScript 的网络界面,以便全球具有各种客户端设置的所有用户都可以轻松访问该数据库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5597/8728188/d3227dd03717/gkab1107fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验