Pearl Sara, Kumar Hithesh, Vijayakumar Santhiya, Basu Soumya, Ramaiah Sudha, Anbarasu Anand
Department of Biotechnology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India; Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India.
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India; Department of Bio-Sciences, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India.
J Genet Eng Biotechnol. 2025 Sep;23(3):100536. doi: 10.1016/j.jgeb.2025.100536. Epub 2025 Jul 10.
Microgravity, pressure, and temperature variations in the International Space Station (ISS) create conditions leading to the emergence of superbugs. Due to technical issues in spacecraft, astronauts are forced to stay in ISS for extended periods; prolonged stay and exposure in stressful ISS environment weakens their immune systems, increasing susceptibility to infections. The presence of hypervirulent and antibiotic-resistant pathogens in space station is a worrisome feature as these might cause serious life-threatening infections in astronauts staying in high stress environments with weakened immune systems. In the present study, we compared antimicrobial resistance genes (ARGs) and virulence factors (VFs) in bacterial genomes from ISS with Earth counterparts. ISS genomes exhibited elevated counts of defense-related genes, particularly in E. ludwigii and E. cancerogenus. Among genes uniquely found in ISS genomes, CRISPR-Cas system components were notably prevalent. Though Earth genomes harbored higher number of ARGs overall, several species from ISS possessed modestly higher ARG counts. VFs profiling showed a slightly lower count in ISS genomes, but P. conspicua, E. ludwigii, and K. pneumoniae from ISS carried exclusive VFs linked to metal ion uptake and secretion systems, suggesting environment-driven functional adaptations. The adaptation of pathogenic bacteria in ISS is alarming and therefore periodic monitoring of bacterial genomic surveillance is important. Our findings shed light on genomic profiles in bacterial strains from both ISS and Earth, enhancing our understanding of the bacterial pathogens' potential impact on drug resistance and pathogenicity in space-missions and the possible threat of spread from ISS.
国际空间站(ISS)中的微重力、压力和温度变化创造了导致超级细菌出现的条件。由于航天器的技术问题,宇航员被迫在国际空间站长时间停留;在压力巨大的国际空间站环境中长时间停留和暴露会削弱他们的免疫系统,增加感染易感性。空间站中存在高毒力和抗生素抗性病原体是一个令人担忧的特征,因为这些病原体可能会在免疫系统较弱的高压力环境中给宇航员造成严重的危及生命的感染。在本研究中,我们比较了国际空间站细菌基因组中的抗菌抗性基因(ARGs)和毒力因子(VFs)与地球上的对应物。国际空间站的基因组显示出与防御相关基因的数量增加,特别是在路德维希肠杆菌和致癌肠杆菌中。在国际空间站基因组中独特发现的基因中,CRISPR-Cas系统组件尤为普遍。虽然地球上的基因组总体上含有更多数量的ARGs,但国际空间站的几个物种拥有略高数量的ARGs。毒力因子分析表明国际空间站基因组中的数量略低,但来自国际空间站的显著拟杆菌、路德维希肠杆菌和肺炎克雷伯菌携带与金属离子摄取和分泌系统相关的独特毒力因子,表明是环境驱动的功能适应。致病细菌在国际空间站中的适应情况令人担忧,因此定期监测细菌基因组监测很重要。我们的研究结果揭示了国际空间站和地球上细菌菌株的基因组概况,增强了我们对细菌病原体在太空任务中对耐药性和致病性的潜在影响以及从国际空间站传播的可能威胁的理解。