Suppr超能文献

使用人类参考交互集扩展基于片段的蛋白质-蛋白质相互作用方法。

Scaling-up a fragment-based protein-protein interaction method using a human reference interaction set.

机构信息

Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar.

Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA.

出版信息

Proteins. 2022 Apr;90(4):959-972. doi: 10.1002/prot.26288. Epub 2021 Dec 13.

Abstract

Protein-protein interactions (PPIs) are essential in understanding numerous aspects of protein function. Here, we significantly scaled and modified analyses of the recently developed all-vs-all sequencing (AVA-Seq) approach using a gold-standard human protein interaction set (hsPRS-v2) containing 98 proteins. Binary interaction analyses recovered 20 of 47 (43%) binary PPIs from this positive reference set (PRS), comparing favorably with other methods. However, the increase of 20× in the interaction search space for AVA-Seq analysis in this manuscript resulted in numerous changes to the method required for future use in genome-wide interaction studies. We show that standard sequencing analysis methods must be modified to consider the possible recovery of thousands of positives among millions of tested interactions in a single sequencing run. The PRS data were used to optimize data scaling, auto-activator removal, rank interaction features (such as orientation and unique fragment pairs), and statistical cutoffs. Using these modifications to the method, AVA-Seq recovered >500 known and novel PPIs, including interactions between wild-type fragments of tumor protein p53 and minichromosome maintenance complex proteins 2 and 5 (MCM2 and MCM5) that could be of interest in human disease.

摘要

蛋白质-蛋白质相互作用 (PPIs) 对于理解蛋白质功能的众多方面至关重要。在这里,我们使用包含 98 种蛋白质的黄金标准人类蛋白质相互作用集 (hsPRS-v2) 对最近开发的全对全测序 (AVA-Seq) 方法进行了显著扩展和修改。二元相互作用分析从这个阳性参考集 (PRS) 中恢复了 47 个二元 PPIs 中的 20 个(43%),与其他方法相比表现良好。然而,在本文中,AVA-Seq 分析的相互作用搜索空间增加了 20 倍,这导致该方法需要进行许多修改,以便将来用于全基因组相互作用研究。我们表明,标准测序分析方法必须进行修改,以考虑在单个测序运行中从数百万个测试相互作用中可能恢复数千个阳性结果。PRS 数据用于优化数据缩放、自动激活剂去除、相互作用特征(如方向和独特片段对)和统计截止值。使用该方法的这些修改,AVA-Seq 恢复了 >500 个已知和新的 PPIs,包括肿瘤蛋白 p53 的野生型片段与微小染色体维持复合物蛋白 2 和 5 (MCM2 和 MCM5) 之间的相互作用,这些相互作用可能与人类疾病有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e36c/9299658/7cad58455bc8/PROT-90-959-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验