Suppr超能文献

IUPred3:利用明确的实验注释和进化保守性可视化增强的蛋白质无序性预测。

IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation.

机构信息

Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/c, Budapest H-1117, Hungary.

出版信息

Nucleic Acids Res. 2021 Jul 2;49(W1):W297-W303. doi: 10.1093/nar/gkab408.

Abstract

Intrinsically disordered proteins and protein regions (IDPs/IDRs) exist without a single well-defined conformation. They carry out important biological functions with multifaceted roles which is also reflected in their evolutionary behavior. Computational methods play important roles in the characterization of IDRs. One of the commonly used disorder prediction methods is IUPred, which relies on an energy estimation approach. The IUPred web server takes an amino acid sequence or a Uniprot ID/accession as an input and predicts the tendency for each amino acid to be in a disordered region with an option to also predict context-dependent disordered regions. In this new iteration of IUPred, we added multiple novel features to enhance the prediction capabilities of the server. First, learning from the latest evaluation of disorder prediction methods we introduced multiple new smoothing functions to the prediction that decreases noise and increases the performance of the predictions. We constructed a dataset consisting of experimentally verified ordered/disordered regions with unambiguous annotations which were added to the prediction. We also introduced a novel tool that enables the exploration of the evolutionary conservation of protein disorder coupled to sequence conservation in model organisms. The web server is freely available to users and accessible at https://iupred3.elte.hu.

摘要

无规卷曲蛋白质和蛋白质区域(IDPs/IDRs)没有单一明确的构象。它们具有多方面的作用,执行着重要的生物学功能,这也反映在它们的进化行为中。计算方法在 IDRs 的特征描述中起着重要的作用。常用的无序预测方法之一是 IUPred,它依赖于能量估计方法。IUPred 网络服务器以氨基酸序列或 Uniprot ID/访问号作为输入,预测每个氨基酸处于无序区域的倾向,并提供预测上下文相关的无序区域的选项。在 IUPred 的这个新版本中,我们添加了多个新的特征,以增强服务器的预测能力。首先,从最新的无序预测方法评估中学习,我们在预测中引入了多个新的平滑函数,以减少噪声并提高预测性能。我们构建了一个包含实验验证的有序/无序区域的数据集,这些区域具有明确的注释,并将其添加到预测中。我们还引入了一个新工具,该工具能够探索蛋白质无序性与模型生物中序列保守性的进化相关性。该网络服务器可供用户免费使用,网址为 https://iupred3.elte.hu。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/124c/8262696/ca0deb4273f2/gkab408gra1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验