Gisbert Victor G, Garcia Ricardo
Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
ACS Nano. 2021 Dec 28;15(12):20574-20581. doi: 10.1021/acsnano.1c09178. Epub 2021 Dec 1.
The nanoscale determination of the mechanical properties of interfaces is of paramount relevance in materials science and cell biology. Bimodal atomic force microscopy (AFM) is arguably the most advanced nanoscale method for mapping the elastic modulus of interfaces. Simulations, theory, and experiments have validated bimodal AFM measurements on thick samples (from micrometer to millimeter). However, the bottom-effect artifact, this is, the influence of the rigid support on the determination of the Young's modulus, questions its accuracy for ultrathin materials and interfaces (1-15 nm). Here we develop a bottom-effect correction method that yields the intrinsic Young's modulus value of a material independent of its thickness. Experiments and numerical simulations validate the accuracy of the method for a wide range of materials (1 MPa to 100 GPa). Otherwise, the Young's modulus of an ultrathin material might be overestimated by a 10-fold factor.
界面力学性能的纳米级测定在材料科学和细胞生物学中具有至关重要的意义。双峰原子力显微镜(AFM)可以说是绘制界面弹性模量最先进的纳米级方法。模拟、理论和实验已经验证了双峰AFM对厚样品(从微米到毫米)的测量。然而,底部效应伪像,即刚性支撑对杨氏模量测定的影响,质疑了其对超薄材料和界面(1-15纳米)测量的准确性。在此,我们开发了一种底部效应校正方法,该方法可以得出与材料厚度无关的固有杨氏模量值。实验和数值模拟验证了该方法在广泛材料(1兆帕至100吉帕)范围内的准确性。否则,超薄材料的杨氏模量可能会被高估10倍。