Benaglia Simone, Amo Carlos A, Garcia Ricardo
Material Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
Nanoscale. 2019 Aug 15;11(32):15289-15297. doi: 10.1039/c9nr04396a.
Quantitative mapping of viscoelastic properties of soft matter with a nanoscale spatial resolution is an active and relevant research topic in atomic force microscopy (AFM) and nanoscale science characterization. The AFM has demonstrated its accuracy to measure the energy dissipated on a sample surface with an atomic-scale resolution. However, the transformation of energy dissipation values associated with viscoelastic interactions to a material property remains very challenging. A key issue is to establish the relationship between the AFM observables and some material properties such as viscosity coefficient or relaxation time. Another relevant issue is to determine the accuracy of the measurements. We demonstrate that bimodal atomic force microscopy enables the accurate measurement of several viscoelastic parameters such as the Young's modulus, viscosity coefficient, retardation time or loss tangent. The parameters mentioned above are measured at the same time that the true topography. We demonstrate that the loss tangent is proportional to the viscosity coefficient. We show that the mapping of viscoelastic properties neither degrades the spatial resolution nor the imaging speed of AFM. The results are presented for homogeneous polymer and block co-polymer samples with Young's modulus, viscosity and retardation times ranging from 100 MPa to 3 GPa, 10 to 400 Pa s and 50 to 400 ns, respectively. Numerical simulations validate the accuracy of bimodal AFM to determine the viscoelastic parameters.
在纳米尺度空间分辨率下对软物质粘弹性特性进行定量映射,是原子力显微镜(AFM)和纳米尺度科学表征领域一个活跃且相关的研究课题。AFM已证明其能够以原子尺度分辨率测量样品表面耗散的能量。然而,将与粘弹性相互作用相关的能量耗散值转化为材料特性仍然极具挑战性。一个关键问题是要建立AFM可观测量与某些材料特性(如粘度系数或弛豫时间)之间的关系。另一个相关问题是确定测量的准确性。我们证明双峰原子力显微镜能够精确测量多个粘弹性参数,如杨氏模量、粘度系数、延迟时间或损耗角正切。上述参数是在测量真实形貌的同时进行测量的。我们证明损耗角正切与粘度系数成正比。我们表明粘弹性特性的映射既不会降低AFM的空间分辨率,也不会降低其成像速度。给出了杨氏模量、粘度和延迟时间分别在100 MPa至3 GPa、10至400 Pa·s和50至400 ns范围内的均相聚合物和嵌段共聚物样品的结果。数值模拟验证了双峰AFM确定粘弹性参数的准确性。