Garcia Ricardo, Tejedor Jaime R
Instituto de Ciencia de Materiales de Madrid, CSIC c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
Nanoscale Adv. 2025 Aug 26. doi: 10.1039/d5na00702j.
AFM-based mechanical property measurements are widely used in energy storage, polymer science, mechanobiology or nanomedicine. Mechanical properties are determined by expressing the experimental force in terms of a contact mechanics model. A nanomechanical map is generated by representing one or more mechanical parameters as a function of the tip's spatial coordinates. Force spectroscopy modes might be separated into two categories, adhesion and indentation. Here we describe the principles of AFM-based indentation modes to generate spatially resolved maps of the mechanical properties at the nanoscale. The review provides an update on the progress in nanomechanical mapping since 2019. The focus is on quantitative accuracy, spatial resolution, high-speed data acquisition, machine learning and viscoelastic property mapping. Two advanced applications which emerged from AFM-based indentation modes, nanomechanical tomography and volume imaging of solid-liquid interfaces, are also described.
基于原子力显微镜(AFM)的力学性能测量在能量存储、聚合物科学、力学生物学或纳米医学中得到广泛应用。通过根据接触力学模型来表示实验力,从而确定力学性能。通过将一个或多个力学参数表示为针尖空间坐标的函数,生成纳米力学图谱。力谱模式可分为两类,即粘附和压痕。在此,我们描述基于AFM的压痕模式原理,以生成纳米尺度下力学性能的空间分辨图谱。本综述介绍了自2019年以来纳米力学映射方面的进展。重点在于定量精度、空间分辨率、高速数据采集、机器学习和粘弹性性能映射。还描述了基于AFM压痕模式产生的两个先进应用,即纳米力学断层扫描和固液界面的体积成像。