Chang Ruiheng, Wang Kexin, Zhang Youwei, Ma Tianzi, Tang Jianwei, Chen Xue-Wen, Zhang Butian, Wang Shun
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
ACS Appl Mater Interfaces. 2021 Dec 15;13(49):59411-59421. doi: 10.1021/acsami.1c10888. Epub 2021 Dec 1.
Heterostructures of quantum dots (QDs) and two-dimensional (2D) materials show promising potential for photodetection applications owing to their combination of high optical absorption and good in-plane carrier mobility. In this work, the performance of QD-2D photodetectors is tuned by band engineering. Devices are fabricated by coating MoS nanosheets with InP QDs, type-I core-shell InP/ZnS QDs, and type-II core-shell InP/CdS QDs. Comparative spectroscopic and photoelectric studies of different hybrids show that the energy band alignment and shell thickness can influence the efficiency of charge transfer (CT), energy transfer (ET), and defect-related processes between QDs and MoS. Benefiting from efficient CT between the QDs and MoS, a significant enhancement of responsivity and detectivity is observed in thick-shell InP/CdS QD-MoS devices. Our results demonstrate the feasibility of using core-shell QDs for regulating the ET and CT efficiency in heterostructures and highlight the importance of interface band design in QD-2D and other low-dimensional photodetectors.
量子点(QD)与二维(2D)材料的异质结构因其高光学吸收和良好的面内载流子迁移率的结合,在光探测应用中显示出有前景的潜力。在这项工作中,通过能带工程来调节量子点-二维光探测器的性能。通过用磷化铟量子点、I型核壳结构的磷化铟/硫化锌量子点和II型核壳结构的磷化铟/硫化镉量子点包覆二硫化钼纳米片来制造器件。对不同混合体的比较光谱和光电研究表明,能带排列和壳层厚度会影响量子点与二硫化钼之间的电荷转移(CT)、能量转移(ET)以及与缺陷相关过程的效率。受益于量子点与二硫化钼之间的高效电荷转移,在厚壳磷化铟/硫化镉量子点-二硫化钼器件中观察到响应度和探测率显著提高。我们的结果证明了使用核壳量子点调节异质结构中能量转移和电荷转移效率的可行性,并突出了界面能带设计在量子点-二维及其他低维光探测器中的重要性。