Suppr超能文献

解析稳定聚脯氨酸 II 构象和降低聚脯氨酸链中顺式脯氨酸丰度的骨架非共价相互作用。

Deciphering the Backbone Noncovalent Interactions that Stabilize Polyproline II Conformation and Reduce cis Proline Abundance in Polyproline Tracts.

机构信息

New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.

出版信息

J Phys Chem B. 2021 Dec 16;125(49):13394-13405. doi: 10.1021/acs.jpcb.1c07875. Epub 2021 Dec 1.

Abstract

Proline (Pro) has a higher propensity to adopt cis amide geometry than the other natural amino acids, and a poly-Pro (poly-P) tract can adopt either a polyproline I (PPI, all cis amide) or a polyproline II (PPII, all trans amide) helical conformation. Recent studies have revealed a reduced abundance of cis amide geometry among the inner Pro residues of a poly-P tract. However, the forces that stabilize the polyproline helices and the reason for the higher trans amide propensity of the inner Pro residues of a poly-P tract are poorly understood. Herein, we have studied both Pro and non-Pro PPII helical sequences and identified the backbone noncovalent interactions that are crucial to the higher stability of the trans Pro-amide geometry and the preference for a PPII helical conformation. We show the presence of reciprocal CO···CO interactions that extend over the whole PPII helical region. Interestingly, the CO···CO interactions strengthen with the increase in the PPII helical chain length and the inner CO groups possess stronger CO···CO interactions, which could explain the reduced cis abundance of the inner Pro residues of a poly-P tract. We also identified a much stronger (∼0.9 kcal·mol) n → σ* interaction between the N-terminal CO oxygen lone pair and the antibonding orbital (σ*) of their C-C bonds. As the n → σ* interaction is possible only in the trans isomers of Pro, this interaction should be crucial for the stabilization of a PPII helix. Finally, an unusual n(amide) → σ* interaction (∼0.3 kcal·mol) was observed between the peptidic nitrogen lone pair (n) and the antibonding orbital (σ*) of the subsequent C-terminal peptide C-N bond. We propose a cumulative effect of these interactions in the stabilization of a PPII helix.

摘要

脯氨酸(Pro)比其他天然氨基酸更容易采用顺酰胺几何构型,而多脯氨酸(poly-P)链可以采用多脯氨酸 I(PPI,全部顺酰胺)或多脯氨酸 II(PPII,全部反酰胺)螺旋构象。最近的研究表明,多脯氨酸链中内部脯氨酸残基的顺酰胺几何构型丰度降低。然而,稳定多脯氨酸螺旋的力以及多脯氨酸链中内部脯氨酸残基具有更高反酰胺倾向的原因仍不清楚。在此,我们研究了脯氨酸和非脯氨酸的 PPII 螺旋序列,并确定了对反脯氨酸酰胺几何构型的更高稳定性和对 PPII 螺旋构象的偏好至关重要的骨架非共价相互作用。我们发现存在贯穿整个 PPII 螺旋区域的反向 CO···CO 相互作用。有趣的是,随着 PPII 螺旋链长度的增加,CO···CO 相互作用增强,并且内部 CO 基团具有更强的 CO···CO 相互作用,这可以解释多脯氨酸链中内部脯氨酸残基的顺酰胺丰度降低。我们还发现 N 端 CO 氧孤对和它们的 C-C 键的反键轨道(σ*)之间存在更强的(∼0.9 kcal·mol)n → σ相互作用。由于 n → σ相互作用只能在 Pro 的反式异构体中发生,因此这种相互作用对于稳定 PPII 螺旋至关重要。最后,观察到肽酰基氮孤对(n)和随后的 C 末端肽 C-N 键的反键轨道(σ*)之间存在异常的 n(酰胺)→ σ*相互作用(∼0.3 kcal·mol)。我们提出这些相互作用在稳定 PPII 螺旋中的累积效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验