Pluvinage John V, Sun Jerry, Claes Christel, Flynn Ryan A, Haney Michael S, Iram Tal, Meng Xiangling, Lindemann Rachel, Riley Nicholas M, Danhash Emma, Chadarevian Jean Paul, Tapp Emma, Gate David, Kondapavulur Sravani, Cobos Inma, Chetty Sundari, Pașca Anca M, Pașca Sergiu P, Berry-Kravis Elizabeth, Bertozzi Carolyn R, Blurton-Jones Mathew, Wyss-Coray Tony
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA.
Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
Sci Transl Med. 2021 Dec;13(622):eabg2919. doi: 10.1126/scitranslmed.abg2919. Epub 2021 Dec 1.
Lysosome dysfunction is a shared feature of rare lysosomal storage diseases and common age-related neurodegenerative diseases. Microglia, the brain-resident macrophages, are particularly vulnerable to lysosome dysfunction because of the phagocytic stress of clearing dying neurons, myelin, and debris. CD22 is a negative regulator of microglial homeostasis in the aging mouse brain, and soluble CD22 (sCD22) is increased in the cerebrospinal fluid of patients with Niemann-Pick type C disease (NPC). However, the role of CD22 in the human brain remains unknown. In contrast to previous findings in mice, here, we show that CD22 is expressed by oligodendrocytes in the human brain and binds to sialic acid–dependent ligands on microglia. Using unbiased genetic and proteomic screens, we identify insulin-like growth factor 2 receptor (IGF2R) as the binding partner of sCD22 on human myeloid cells. Targeted truncation of IGF2R revealed that sCD22 docks near critical mannose 6-phosphate–binding domains, where it disrupts lysosomal protein trafficking. Interfering with the sCD22-IGF2R interaction using CD22 blocking antibodies ameliorated lysosome dysfunction in human mutant induced pluripotent stem cell–derived microglia-like cells without harming oligodendrocytes in vitro. These findings reinforce the differences between mouse and human microglia and provide a candidate microglia-directed immunotherapeutic to treat NPC.
溶酶体功能障碍是罕见的溶酶体贮积病和常见的年龄相关性神经退行性疾病的共同特征。小胶质细胞作为驻留在大脑中的巨噬细胞,由于在清除死亡神经元、髓鞘和碎片时产生吞噬应激,特别容易受到溶酶体功能障碍的影响。CD22是衰老小鼠大脑中小胶质细胞稳态的负调节因子,在尼曼-皮克C型病(NPC)患者的脑脊液中可溶性CD22(sCD22)水平升高。然而,CD22在人脑中的作用尚不清楚。与先前在小鼠中的发现相反,在这里,我们表明CD22在人脑中由少突胶质细胞表达,并与小胶质细胞上的唾液酸依赖性配体结合。通过无偏倚的基因和蛋白质组学筛选,我们确定胰岛素样生长因子2受体(IGF2R)是人髓细胞上sCD22的结合伴侣。对IGF2R进行靶向截短显示,sCD22停靠在关键的甘露糖6-磷酸结合结构域附近,在那里它会破坏溶酶体蛋白运输。在体外使用CD22阻断抗体干扰sCD22-IGF2R相互作用可改善人突变诱导多能干细胞衍生的小胶质样细胞中的溶酶体功能障碍,而不会损害少突胶质细胞。这些发现强化了小鼠和人小胶质细胞之间的差异,并为治疗NPC提供了一种针对小胶质细胞的候选免疫疗法。
Hum Mol Genet. 2018-6-15
Nat Commun. 2021-2-24
Biochim Biophys Acta Mol Basis Dis. 2024-12
Genome Med. 2025-4-28
Mol Neurodegener. 2025-2-21
J Neuroinflammation. 2025-2-5
Front Endocrinol (Lausanne). 2024
Front Psychiatry. 2023-11-9
J Immunother Cancer. 2023-6
Cell Mol Life Sci. 2023-4-21
Life Sci Alliance. 2021-10
Brain Commun. 2020-12-20
Nat Commun. 2021-2-24