Suppr超能文献

RCMVis:用于路径选择建模的可视化分析系统。

RCMVis: A Visual Analytics System for Route Choice Modeling.

出版信息

IEEE Trans Vis Comput Graph. 2023 Mar;29(3):1799-1817. doi: 10.1109/TVCG.2021.3131824. Epub 2023 Jan 30.

Abstract

We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers' route choice behaviors and how much they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank, and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a k-medoids clustering method and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which data mainly supported the modeling result, enabling further discussion of the model.

摘要

我们提出了 RCMVis,这是一个支持交互式路线选择建模分析的可视化分析系统。它旨在对路线的哪些特征(如距离和交通信号灯数量)影响旅行者的路线选择行为以及它们在旅行过程中对选择的影响程度进行建模。通过与领域专家的密切合作,我们设计了一个用于路线选择建模的可视化分析框架。该框架支持三个交互式分析阶段:探索、建模和推理。在探索阶段,我们帮助分析师从多个起点-终点(OD)对中交互地探索旅行数据,并选择他们想要关注的数据集。为此,我们提供了协调的多个 OD 视图,每个视图都有不同的焦点,允许分析师从多维属性的角度检查、排名和比较 OD 对。在建模阶段,我们将 k-medoids 聚类方法和路径大小对数模型集成到我们的系统中,以支持分析师对具有特征选择、超参数调整和模型比较支持的旅行进行路线选择行为建模。最后,在推理阶段,我们通过选择性地检查强烈支持建模结果的旅行来帮助分析师合理化和改进模型。在评估中,我们与领域专家进行了案例研究和访谈。领域专家从大量的建模结果中发现了意外的见解,使他们能够更有效地探索超参数空间以获得更好的结果。此外,他们还获得了 OD 和道路级别的数据见解,这些数据主要支持建模结果,从而进一步讨论了模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验