Suppr超能文献

机器学习预测和优化藻类水热液化制备生物油。

Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae.

机构信息

School of Energy Science and Engineering, Central South University, Changsha 410083, PR China.

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.

出版信息

Bioresour Technol. 2021 Dec;342:126011. doi: 10.1016/j.biortech.2021.126011. Epub 2021 Sep 22.

Abstract

Hydrothermal liquefaction (HTL) of algae is a promising biofuel production technology. However, it is always difficult and time-consuming to identify the best optimal conditions of HTL for different algae by the conventional experimental study. Therefore, machine learning (ML) algorithms were applied to predict and optimize bio-oil production with algae compositions and HTL conditions as inputs, and bio-oil yield (Yield_oil), and the contents of oxygen (O_oil) and nitrogen (N_oil) in bio-oil as outputs. Results indicated that gradient boosting regression (GBR, average test R ∼ 0.90) exhibited better performance than random forest (RF) for both single and multi-target tasks prediction. Furthermore, the model-based interpretation suggested that the relative importance of operating conditions (temperature and residence time) was higher than algae characteristics for the three targets. Moreover, ML-based reverse and forward optimizations were implemented with experimental verifications. The verifications were acceptable, showing great potential of ML-aided HTL for producing desirable bio-oil.

摘要

水热液化 (HTL) 藻类是一种很有前途的生物燃料生产技术。然而,通过传统的实验研究来确定不同藻类的最佳 HTL 条件总是很困难和耗时的。因此,机器学习 (ML) 算法被应用于预测和优化生物油的生产,以藻类成分和 HTL 条件作为输入,以生物油产量 (Yield_oil) 以及生物油中的氧 (O_oil) 和氮 (N_oil) 含量作为输出。结果表明,梯度提升回归 (GBR,平均测试 R∼0.90) 对于单目标和多目标任务预测的性能均优于随机森林 (RF)。此外,基于模型的解释表明,对于三个目标,操作条件(温度和停留时间)的相对重要性高于藻类特性。此外,还进行了基于 ML 的反向和正向优化,并进行了实验验证。验证结果是可以接受的,这表明基于 ML 的 HTL 在生产理想生物油方面具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验