Suppr超能文献

基于机器学习模型对碱催化水热木质素解聚的见解

Machine Learning Model Insights into Base-Catalyzed Hydrothermal Lignin Depolymerization.

作者信息

Castro Garcia Abraham, Cheng Shuo, McGlynn Shawn E, Cross Jeffrey S

机构信息

Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 S6-10, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan.

出版信息

ACS Omega. 2023 Aug 24;8(35):32078-32089. doi: 10.1021/acsomega.3c04168. eCollection 2023 Sep 5.

Abstract

Lignin, an abundant component of plant matter, can be depolymerized into renewable aromatic chemicals and biofuels but remains underutilized. Homogeneously catalyzed depolymerization in water has gained attention due to its economic feasibility and performance but suffers from inconsistently reported yields of bio-oil and solid residues. In this study, machine learning methods were used to develop predictive models for bio-oil and solid residue yields by using a few reaction variables and were subsequently validated by doing experimental work and comparing the predictions to the results. The models achieved a coefficient of determination () score of 0.83 and 0.76, respectively, for bio-oil yield and solid residue. Variable importance for each model was calculated by two different methodologies and was tied to existing studies to explain the model predictive behavior. Based on the outcome of the study, the creation of concrete guidelines for reporting in lignin depolymerization studies was recommended. Shapley additive explanation value analysis reveals that temperature and reaction time are generally the strongest predictors of experimental outcomes compared to the rest.

摘要

木质素是植物物质的一种丰富成分,可解聚为可再生的芳香族化学品和生物燃料,但仍未得到充分利用。水中的均相催化解聚因其经济可行性和性能而受到关注,但生物油和固体残渣的产率报道不一致。在本研究中,使用机器学习方法通过几个反应变量开发生物油和固体残渣产率的预测模型,随后通过实验工作进行验证,并将预测结果与实验结果进行比较。这些模型对生物油产率和固体残渣的决定系数()得分分别为0.83和0.76。通过两种不同的方法计算每个模型的变量重要性,并与现有研究相关联以解释模型的预测行为。基于该研究结果,建议制定木质素解聚研究报告的具体指南。Shapley加性解释值分析表明,与其他因素相比,温度和反应时间通常是实验结果的最强预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5092/10483646/4772c3356e61/ao3c04168_0002.jpg

相似文献

1
Machine Learning Model Insights into Base-Catalyzed Hydrothermal Lignin Depolymerization.
ACS Omega. 2023 Aug 24;8(35):32078-32089. doi: 10.1021/acsomega.3c04168. eCollection 2023 Sep 5.
2
Machine learning based analysis of reaction phenomena in catalytic lignin depolymerization.
Bioresour Technol. 2022 Feb;345:126503. doi: 10.1016/j.biortech.2021.126503. Epub 2021 Dec 7.
3
Extraction methodology of lignin from biomass waste influences the quality of bio-oil obtained by solvothermal depolymerization process.
Chemosphere. 2022 Apr;293:133473. doi: 10.1016/j.chemosphere.2021.133473. Epub 2021 Dec 30.
5
Efficient depolymerization of lignin through microwave-assisted Ru/C catalyst cooperated with metal chloride in methanol/formic acid media.
Front Bioeng Biotechnol. 2022 Dec 16;10:1082341. doi: 10.3389/fbioe.2022.1082341. eCollection 2022.
6
Machine learning prediction of nitrogen heterocycles in bio-oil produced from hydrothermal liquefaction of biomass.
Bioresour Technol. 2022 Oct;362:127791. doi: 10.1016/j.biortech.2022.127791. Epub 2022 Aug 17.
7
Experimental and Kinetic Study on Lignin Depolymerization in Water/Formic Acid System.
Int J Mol Sci. 2017 Oct 1;18(10):2082. doi: 10.3390/ijms18102082.
8
Exploring the compatibility between hydrothermal depolymerization of alkaline lignin from sugarcane bagasse and metabolization of the aromatics by bacteria.
Int J Biol Macromol. 2022 Dec 31;223(Pt A):223-230. doi: 10.1016/j.ijbiomac.2022.10.269. Epub 2022 Nov 4.
10
Catalytic Lignin Depolymerization to Aromatic Chemicals.
Acc Chem Res. 2020 Feb 18;53(2):470-484. doi: 10.1021/acs.accounts.9b00573. Epub 2020 Jan 30.

引用本文的文献

本文引用的文献

1
Machine learning for hydrothermal treatment of biomass: A review.
Bioresour Technol. 2023 Feb;370:128547. doi: 10.1016/j.biortech.2022.128547. Epub 2022 Dec 28.
2
Machine learning prediction of nitrogen heterocycles in bio-oil produced from hydrothermal liquefaction of biomass.
Bioresour Technol. 2022 Oct;362:127791. doi: 10.1016/j.biortech.2022.127791. Epub 2022 Aug 17.
3
Machine learning based analysis of reaction phenomena in catalytic lignin depolymerization.
Bioresour Technol. 2022 Feb;345:126503. doi: 10.1016/j.biortech.2021.126503. Epub 2021 Dec 7.
4
Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae.
Bioresour Technol. 2021 Dec;342:126011. doi: 10.1016/j.biortech.2021.126011. Epub 2021 Sep 22.
5
Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes.
Bioresour Technol. 2022 Jan;344(Pt B):126278. doi: 10.1016/j.biortech.2021.126278. Epub 2021 Nov 6.
6
ReaxFF Simulations of Lignin Fragmentation on a Palladium-Based Heterogeneous Catalyst in Methanol-Water Solution.
J Phys Chem Lett. 2018 Sep 20;9(18):5233-5239. doi: 10.1021/acs.jpclett.8b02275. Epub 2018 Aug 30.
8
Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol.
Chemosphere. 2013 Nov;93(9):1755-64. doi: 10.1016/j.chemosphere.2013.06.003. Epub 2013 Jun 29.
9
Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters.
Bioresour Technol. 2013 Jul;139:13-20. doi: 10.1016/j.biortech.2013.03.199. Epub 2013 Apr 6.
10
Towards quantitative catalytic lignin depolymerization.
Chemistry. 2011 May 16;17(21):5939-48. doi: 10.1002/chem.201002438. Epub 2011 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验