Suppr超能文献

生物质碳开采以开发受自然启发的循环经济材料。

Biomass carbon mining to develop nature-inspired materials for a circular economy.

作者信息

Bachs-Herrera Anna, York Daniel, Stephens-Jones Tristan, Mabbett Ian, Yeo Jingjie, Martin-Martinez Francisco J

机构信息

Department of Chemistry, Swansea University, Swansea SA2 8PP, UK.

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

iScience. 2023 Mar 31;26(4):106549. doi: 10.1016/j.isci.2023.106549. eCollection 2023 Apr 21.

Abstract

A transition from a linear to a circular economy is the only alternative to reduce current pressures in natural resources. Our society must redefine our material sources, rethink our supply chains, improve our waste management, and redesign materials and products. Valorizing extensively available biomass wastes, as new carbon mines, and developing biobased materials that mimic nature's efficiency and wasteless procedures are the most promising avenues to achieve technical solutions for the global challenges ahead. Advances in materials processing, and characterization, as well as the rise of artificial intelligence, and machine learning, are supporting this transition to a new materials' mining. Location, cultural, and social aspects are also factors to consider. This perspective discusses new alternatives for carbon mining in biomass wastes, the valorization of biomass using available processing techniques, and the implementation of computational modeling, artificial intelligence, and machine learning to accelerate material's development and process engineering.

摘要

从线性经济向循环经济转型是减轻当前自然资源压力的唯一选择。我们的社会必须重新定义物质来源,重新思考供应链,改善废物管理,并重新设计材料和产品。将大量可用的生物质废物作为新的碳矿加以利用,以及开发模仿自然效率和无浪费过程的生物基材料,是实现应对未来全球挑战的技术解决方案的最有前景的途径。材料加工与表征方面的进展,以及人工智能和机器学习的兴起,都在支持向新型材料开采的这一转变。地理位置、文化和社会因素也是需要考虑的方面。本文探讨了生物质废物碳开采的新选择、利用现有加工技术对生物质进行增值利用,以及实施计算建模、人工智能和机器学习以加速材料开发和工艺工程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccb5/10130920/081cbe90163a/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验