文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MRI 放射组学在乳腺肿瘤智能诊断和新辅助化疗反应准确预测中的应用:综述。

MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses-a review.

机构信息

Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China.

Department of Biomedical Engineering, The University of Reading, RG6 6AY, UK.

出版信息

Comput Methods Programs Biomed. 2022 Feb;214:106510. doi: 10.1016/j.cmpb.2021.106510. Epub 2021 Nov 11.


DOI:10.1016/j.cmpb.2021.106510
PMID:34852935
Abstract

BACKGROUND AND OBJECTIVE: This paper aims to overview multidimensional mining algorithms in relation to Magnetic Resonance Imaging (MRI) radiogenomics for computer aided detection and diagnosis of breast tumours. The work also aims to address a new problem in radiogenomics mining: how to combine structural radiomics information with non-structural genomics information for improving the accuracy and efficacy of Neoadjuvant Chemotherapy (NAC). METHODS: This requires the automated extraction of parameters from non-structural breast radiomics data, and finding feature vectors with diagnostic value, which then are combined with genomics data. In order to address the problem of weakly labelled tumour images, a Generative Adiversarial Networks (GAN) based deep learning strategy is proposed for the classification of tumour types; this has significant potential for providing accurate real-time identification of tumorous regions from MRI scans. In order to efficiently integrate in a deep learning framework different features from radiogenomics datasets at multiple spatio-temporal resolutions, pyramid structured and multi-scale densely connected U-Nets are proposed. A bidirectional gated recurrent unit (BiGRU) combined with an attention based deep learning approach is also proposed. RESULTS: The aim is to accurately predict NAC responses by combining imaging and genomic datasets. The approaches discussed incorporate some of the latest developments in of current signal processing and artificial intelligence and have significant potential in advancing and provide a development platform for future cutting-edge biomedical radiogenomics analysis. CONCLUSIONS: The association of genotypic and phenotypic features is at the core of the emergent field of Precision Medicine. It makes use of advances in biomedical big data analysis, which enables the correlation between disease-associated phenotypic characteristics, genetics polymorphism and gene activation to be revealed.

摘要

背景与目的:本文旨在综述与磁共振成像(MRI)放射组学相关的多维挖掘算法,以辅助计算机检测和诊断乳腺癌。本文还旨在解决放射组学挖掘中的一个新问题:如何将结构放射组学信息与非结构基因组学信息相结合,以提高新辅助化疗(NAC)的准确性和疗效。

方法:这需要从非结构乳腺放射组学数据中自动提取参数,并找到具有诊断价值的特征向量,然后将这些特征向量与基因组学数据相结合。为了解决肿瘤图像弱标记的问题,本文提出了一种基于生成对抗网络(GAN)的深度学习策略,用于肿瘤类型的分类;这对于从 MRI 扫描中准确实时识别肿瘤区域具有重要意义。为了在深度学习框架中高效地整合来自多个时空分辨率的放射组学数据集的不同特征,提出了金字塔结构和多尺度密集连接 U-Net。还提出了一种双向门控循环单元(BiGRU)与基于注意力的深度学习方法相结合的方法。

结果:本文旨在通过结合成像和基因组数据集来准确预测 NAC 反应。所讨论的方法结合了当前信号处理和人工智能的最新进展,在推进和提供未来前沿生物医学放射组学分析的发展平台方面具有重要潜力。

结论:基因型和表型特征的关联是精准医学这一新兴领域的核心。它利用了生物医学大数据分析的进展,使疾病相关表型特征、遗传多态性和基因激活之间的相关性得以揭示。

相似文献

[1]
MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses-a review.

Comput Methods Programs Biomed. 2022-2

[2]
Artificial Intelligence in Breast MRI Radiogenomics: Towards Accurate Prediction of Neoadjuvant Chemotherapy Responses.

Curr Med Imaging. 2021

[3]
Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.

Invest Radiol. 2019-2

[4]
Multi-center evaluation of artificial intelligent imaging and clinical models for predicting neoadjuvant chemotherapy response in breast cancer.

Breast Cancer Res Treat. 2022-5

[5]
Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images.

Int J Comput Assist Radiol Surg. 2020-9

[6]
A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy.

Breast Cancer Res. 2020-5-28

[7]
Breast MRI radiogenomics: Current status and research implications.

J Magn Reson Imaging. 2016-6

[8]
Radiogenomics and Artificial Intelligence Approaches Applied to Cardiac Computed Tomography Angiography and Cardiac Magnetic Resonance for Precision Medicine in Coronary Heart Disease: A Systematic Review.

Circ Cardiovasc Imaging. 2021-12

[9]
Role of MRI to Assess Response to Neoadjuvant Therapy for Breast Cancer.

J Magn Reson Imaging. 2020-12

[10]
Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks.

Artif Intell Med. 2019-12-23

引用本文的文献

[1]
Spatial-temporal radiogenomics in predicting neoadjuvant chemotherapy efficacy for breast cancer: a comprehensive review.

J Transl Med. 2025-6-18

[2]
MRI-based digital twins to improve treatment response of breast cancer by optimizing neoadjuvant chemotherapy regimens.

NPJ Digit Med. 2025-4-7

[3]
The added value of ultrasound imaging biomarkers to clinicopathological factors for the prediction of high-risk Oncotype DX recurrence scores in patients with breast cancer.

Quant Imaging Med Surg. 2024-5-1

[4]
Prediction of neoadjuvant chemotherapy pathological complete response for breast cancer based on radiomics nomogram of intratumoral and derived tissue.

BMC Med Imaging. 2024-1-20

[5]
Trends in using deep learning algorithms in biomedical prediction systems.

Front Neurosci. 2023-11-9

[6]
An MRI-based machine learning radiomics can predict short-term response to neoadjuvant chemotherapy in patients with cervical squamous cell carcinoma: A multicenter study.

Cancer Med. 2023-10

[7]
ABVS-Based Radiomics for Early Predicting the Efficacy of Neoadjuvant Chemotherapy in Patients with Breast Cancers.

Breast Cancer (Dove Med Press). 2023-8-15

[8]
CT radiomics nomogram predicts pathological response after induced chemotherapy and overall survival in patients with advanced laryngeal cancer: A single-center retrospective study.

Front Oncol. 2023-3-24

[9]
Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review.

Bioengineering (Basel). 2023-1-28

[10]
Artificial Intelligence (AI) in Breast Imaging: A Scientometric Umbrella Review.

Diagnostics (Basel). 2022-12-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索