Suppr超能文献

基于 MRI 的机器学习放射组学可预测宫颈鳞状细胞癌患者新辅助化疗的短期反应:一项多中心研究。

An MRI-based machine learning radiomics can predict short-term response to neoadjuvant chemotherapy in patients with cervical squamous cell carcinoma: A multicenter study.

机构信息

Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China.

Infervision Medical Technology Co., Ltd, Beijing, China.

出版信息

Cancer Med. 2023 Oct;12(19):19383-19393. doi: 10.1002/cam4.6525. Epub 2023 Sep 29.

Abstract

BACKGROUND AND PURPOSE

Neoadjuvant chemotherapy (NACT) has become an essential component of the comprehensive treatment of cervical squamous cell carcinoma (CSCC). However, not all patients respond to chemotherapy due to individual differences in sensitivity and tolerance to chemotherapy drugs. Therefore, accurately predicting the sensitivity of CSCC patients to NACT was vital for individual chemotherapy. This study aims to construct a machine learning radiomics model based on magnetic resonance imaging (MRI) to assess its efficacy in predicting NACT susceptibility among CSCC patients.

METHODS

This study included 234 patients with CSCC from two hospitals, who were divided into a training set (n = 180), a testing set (n = 20), and an external validation set (n = 34). Manual radiomic features were extracted from transverse section MRI images, and feature selection was performed using the recursive feature elimination (RFE) method. A prediction model was then generated using three machine learning algorithms, namely logistic regression, random forest, and support vector machines (SVM), for predicting NACT susceptibility. The model's performance was assessed based on the area under the receiver operating characteristic curve (AUC), accuracy, and sensitivity.

RESULTS

The SVM approach achieves the highest scores on both the testing set and the external validation set. In the testing set and external validation set, the AUC of the model was 0.88 and 0.764, and the accuracy was 0.90 and 0.853, the sensitivity was 0.93 and 0.962, respectively.

CONCLUSIONS

Machine learning radiomics models based on MRI images have achieved satisfactory performance in predicting the sensitivity of NACT in CSCC patients with high accuracy and robustness, which has great significance for the treatment and personalized medicine of CSCC patients.

摘要

背景与目的

新辅助化疗(NACT)已成为宫颈鳞状细胞癌(CSCC)综合治疗的重要组成部分。然而,由于患者对化疗药物的敏感性和耐受性存在个体差异,并非所有患者均对化疗有反应。因此,准确预测 CSCC 患者对 NACT 的敏感性对于个体化化疗至关重要。本研究旨在构建一种基于磁共振成像(MRI)的机器学习放射组学模型,以评估其在评估 CSCC 患者对 NACT 敏感性中的作用。

方法

本研究纳入了来自两家医院的 234 例 CSCC 患者,将其分为训练集(n=180)、测试集(n=20)和外部验证集(n=34)。从横轴位 MRI 图像中手动提取放射组学特征,并使用递归特征消除(RFE)方法进行特征选择。然后使用三种机器学习算法,即逻辑回归、随机森林和支持向量机(SVM),生成预测 NACT 敏感性的预测模型。根据受试者工作特征曲线下面积(AUC)、准确性和敏感性评估模型的性能。

结果

SVM 方法在测试集和外部验证集上均获得了最高评分。在测试集和外部验证集上,模型的 AUC 分别为 0.88 和 0.764,准确性分别为 0.90 和 0.853,敏感性分别为 0.93 和 0.962。

结论

基于 MRI 图像的机器学习放射组学模型在预测 CSCC 患者 NACT 敏感性方面取得了令人满意的性能,具有较高的准确性和稳健性,对 CSCC 患者的治疗和个体化医学具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de85/10587964/e72360787d30/CAM4-12-19383-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验