Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong.
Department of Computer Science and Technology, The University of Cambridge, Cambridge, UK.
Sci Rep. 2021 Dec 1;11(1):23206. doi: 10.1038/s41598-021-02523-5.
This study investigates thoroughly whether acute exposure to outdoor PM concentration, P, modifies the rate of change in the daily number of COVID-19 infections (R) across 18 high infection provincial capitals in China, including Wuhan. A best-fit multiple linear regression model was constructed to model the relationship between P and R, from 1 January to 20 March 2020, after accounting for meteorology, net move-in mobility (NM), time trend (T), co-morbidity (CM), and the time-lag effects. Regression analysis shows that P (β = 0.4309, p < 0.001) is the most significant determinant of R. In addition, T (β = -0.3870, p < 0.001), absolute humidity (AH) (β = 0.2476, p = 0.002), P × AH (β = -0.2237, p < 0.001), and NM (β = 0.1383, p = 0.003) are more significant determinants of R, as compared to GDP per capita (β = 0.1115, p = 0.015) and CM (Asthma) (β = 0.1273, p = 0.005). A matching technique was adopted to demonstrate a possible causal relationship between P and R across 18 provincial capital cities. A 10 µg/m increase in P gives a 1.5% increase in R (p < 0.001). Interaction analysis also reveals that P × AH and R are negatively correlated (β = -0.2237, p < 0.001). Given that P exacerbates R, we recommend the installation of air purifiers and improved air ventilation to reduce the effect of P on R. Given the increasing observation that COVID-19 is airborne, measures that reduce P, plus mandatory masking that reduces the risks of COVID-19 associated with viral-particulate transmission, are strongly recommended. Our study is distinguished by the focus on the rate of change instead of the individual cases of COVID-19 when modelling the statistical relationship between R and P in China; causal instead of correlation analysis via the matching analysis, while taking into account the key confounders, and the individual plus the interaction effects of P and AH on R.
本研究深入探讨了户外 PM 浓度 P 是否会改变中国 18 个高感染省会城市(包括武汉)COVID-19 感染日新增病例数(R)的变化率。我们构建了一个最佳拟合多元线性回归模型,以在考虑气象、净移入移动(NM)、时间趋势(T)、合并症(CM)和时滞效应后,对 2020 年 1 月 1 日至 3 月 20 日期间 P 与 R 之间的关系进行建模。回归分析表明,P(β=0.4309,p<0.001)是 R 的最重要决定因素。此外,T(β=-0.3870,p<0.001)、绝对湿度(AH)(β=0.2476,p=0.002)、P×AH(β=-0.2237,p<0.001)和 NM(β=0.1383,p=0.003)也是 R 的更显著决定因素,而人均 GDP(β=0.1115,p=0.015)和 CM(哮喘)(β=0.1273,p=0.005)则不是。采用匹配技术来证明 P 和 R 之间在 18 个省会城市之间可能存在因果关系。PM 浓度增加 10μg/m 会导致 R 增加 1.5%(p<0.001)。交互分析还表明,P×AH 和 R 呈负相关(β=-0.2237,p<0.001)。鉴于 PM 会加重 R,我们建议安装空气净化器和改善空气通风,以降低 PM 对 R 的影响。鉴于越来越多的证据表明 COVID-19 是空气传播的,因此强烈建议采取减少 PM 的措施,并强制佩戴口罩,以降低与病毒颗粒传播相关的 COVID-19 风险。我们的研究的特点是在建模中国 R 与 P 之间的统计关系时,重点关注变化率而不是 COVID-19 的个体病例;通过匹配分析进行因果关系分析,而不是相关性分析,同时考虑了关键混杂因素以及 P 和 AH 对 R 的个体和交互作用。