Lederer Philip L, Lehrenfeld Christoph, Schöberl Joachim
Institute for Analysis and Scientific Computing TU Wien Vienna Austria.
Institute for Numerical and Applied Mathematics University of Göttingen Göttingen Germany.
Int J Numer Methods Eng. 2020 Jun 15;121(11):2503-2533. doi: 10.1002/nme.6317. Epub 2020 Feb 18.
In this work we consider the numerical solution of incompressible flows on two-dimensional manifolds. Whereas the compatibility demands of the velocity and the pressure spaces are known from the flat case one further has to deal with the approximation of a velocity field that lies only in the tangential space of the given geometry. Abandoning -conformity allows us to construct finite elements which are-due to an application of the Piola transformation-exactly tangential. To reintroduce continuity (in a weak sense) we make use of (hybrid) discontinuous Galerkin techniques. To further improve this approach, -conforming finite elements can be used to obtain exactly divergence-free velocity solutions. We present several new finite element discretizations. On a number of numerical examples we examine and compare their qualitative properties and accuracy.
在这项工作中,我们考虑二维流形上不可压缩流的数值解。虽然速度和压力空间的相容性要求在平面情形中是已知的,但还必须处理仅位于给定几何形状切空间中的速度场的逼近问题。放弃(\mathbb{P})-协调性使我们能够构造有限元,由于应用了皮奥拉变换,这些有限元恰好是切向的。为了重新引入(弱意义下的)连续性,我们使用(混合)间断伽辽金技术。为了进一步改进这种方法,可以使用(\mathbb{P})-协调有限元来获得完全无散度的速度解。我们给出了几种新的有限元离散化方法。在一些数值例子中,我们检验并比较了它们的定性性质和精度。