Suppr超能文献

曲面上不可压缩流的无散切向有限元方法

Divergence-free tangential finite element methods for incompressible flows on surfaces.

作者信息

Lederer Philip L, Lehrenfeld Christoph, Schöberl Joachim

机构信息

Institute for Analysis and Scientific Computing TU Wien Vienna Austria.

Institute for Numerical and Applied Mathematics University of Göttingen Göttingen Germany.

出版信息

Int J Numer Methods Eng. 2020 Jun 15;121(11):2503-2533. doi: 10.1002/nme.6317. Epub 2020 Feb 18.

Abstract

In this work we consider the numerical solution of incompressible flows on two-dimensional manifolds. Whereas the compatibility demands of the velocity and the pressure spaces are known from the flat case one further has to deal with the approximation of a velocity field that lies only in the tangential space of the given geometry. Abandoning -conformity allows us to construct finite elements which are-due to an application of the Piola transformation-exactly tangential. To reintroduce continuity (in a weak sense) we make use of (hybrid) discontinuous Galerkin techniques. To further improve this approach, -conforming finite elements can be used to obtain exactly divergence-free velocity solutions. We present several new finite element discretizations. On a number of numerical examples we examine and compare their qualitative properties and accuracy.

摘要

在这项工作中,我们考虑二维流形上不可压缩流的数值解。虽然速度和压力空间的相容性要求在平面情形中是已知的,但还必须处理仅位于给定几何形状切空间中的速度场的逼近问题。放弃(\mathbb{P})-协调性使我们能够构造有限元,由于应用了皮奥拉变换,这些有限元恰好是切向的。为了重新引入(弱意义下的)连续性,我们使用(混合)间断伽辽金技术。为了进一步改进这种方法,可以使用(\mathbb{P})-协调有限元来获得完全无散度的速度解。我们给出了几种新的有限元离散化方法。在一些数值例子中,我们检验并比较了它们的定性性质和精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc0/8611805/d9757d9be1ee/NME-121-2503-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验