Suppr超能文献

用标准速度校正投影法求解不可压缩曲面斯托克斯方程

Solving the Incompressible Surface Stokes Equation by Standard Velocity-Correction Projection Methods.

作者信息

Zhao Yanzi, Feng Xinlong

机构信息

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, China.

出版信息

Entropy (Basel). 2022 Sep 23;24(10):1338. doi: 10.3390/e24101338.

Abstract

In this paper, an effective numerical algorithm for the Stokes equation of a curved surface is presented and analyzed. The velocity field was decoupled from the pressure by the standard velocity correction projection method, and the penalty term was introduced to make the velocity satisfy the tangential condition. The first-order backward Euler scheme and second-order BDF scheme are used to discretize the time separately, and the stability of the two schemes is analyzed. The mixed finite element pair (P2,P1) is applied to discretization of space. Finally, numerical examples are given to verify the accuracy and effectiveness of the proposed method.

摘要

本文提出并分析了一种用于曲面斯托克斯方程的有效数值算法。通过标准速度修正投影法将速度场与压力解耦,并引入惩罚项以使速度满足切向条件。分别采用一阶向后欧拉格式和二阶BDF格式对时间进行离散,并分析了两种格式的稳定性。采用混合有限元对(P2,P1)对空间进行离散。最后,通过数值算例验证了所提方法的准确性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/9667557/48ab7ac218fe/entropy-24-01338-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验