文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

米唑斯汀-固体脂质纳米粒载眼部水凝胶的制剂及组织病理学研究。

Formulation and Pathohistological Study of Mizolastine-Solid Lipid Nanoparticles-Loaded Ocular Hydrogels.

机构信息

Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.

出版信息

Int J Nanomedicine. 2021 Nov 24;16:7775-7799. doi: 10.2147/IJN.S335482. eCollection 2021.


DOI:10.2147/IJN.S335482
PMID:34853513
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8627895/
Abstract

BACKGROUND: Mizolastine (MZL) is a dual-action nonsedating topical antihistamine anti-inflammatory agent that is used to relieve allergic conditions, such as rhinitis and conjunctivitis. Solid lipid nanoparticles (SLNs) are advanced delivery system in ophthalmology, with the merits of increasing the corneal drug absorption and hence improved bioavailability with the objective of ocular drug targeting. METHODS: First, MZL was formulated as MZL-SLNs by hot homogenization/ultrasonication adopting a 3 full factorial design. Solid-state characterization, in vitro release, and stability studies have been performed. Then, the optimized MZL-SLNs formula has been incorporated into ocular hydrogels using 1.5% w/v Na alginate and 5% w/v polyvinylpyrrolidone K. The gels were evaluated via in vitro release as well as in vivo studies by applying allergic conjunctivitis congestion in a rabbit-eye model. RESULTS: The optimized formula (F4) was characterized by the highest entrapment efficiency (86.5±1.47%), the smallest mean particle size (202.3±13.59 nm), and reasonable zeta potential (-22.03±3.65 mV). Solid-state characterization of the encapsulation of MZL in SLNs was undertaken. In vitro results showed a sustained release profile from MZL-SLNs up to 30 hours with a non-Fickian Higuchi kinetic model. Stability studies confirmed immutability of freeze-dried MZL-SLNs (F4) upon storage for 6 months. Finally, hydrogel formulations containing MZL-SLNs, proved ocular congestion disappearance with completely repaired conjunctiva after 24 hours. Moreover, pretreatment with MZL-SLNs-loaded hydrogel imparted markedly decreased TNF-α and VEGF-expression levels in rabbits conjunctivae compared with post-treatment with the same formula. CONCLUSION: MZL-SLNs could be considered a promising stable sustained-release nanoparticulate system for preparing ocular hydrogel as effective antiallergy ocular delivery systems.

摘要

背景:米唑斯汀(MZL)是一种具有双重作用的非镇静性局部抗组胺抗炎药物,用于缓解过敏症状,如鼻炎和结膜炎。固体脂质纳米粒(SLNs)是眼科领域的先进给药系统,具有增加角膜药物吸收的优点,从而提高生物利用度,实现眼部药物靶向。

方法:首先,通过采用 3 因素完全实验设计的热熔匀化/超声法将 MZL 制成 MZL-SLNs。进行了固态特征描述、体外释放和稳定性研究。然后,将优化的 MZL-SLNs 配方纳入含有 1.5%w/v 海藻酸钠和 5%w/v 聚乙烯吡咯烷酮 K 的眼部水凝胶中。通过在兔眼模型中应用过敏性结膜炎充血,评估凝胶的体外释放和体内研究。

结果:优化配方(F4)的特点是包封效率最高(86.5±1.47%)、平均粒径最小(202.3±13.59nm)和合理的 ζ 电位(-22.03±3.65mV)。进行了 MZL 在 SLNs 中的包封的固态特征描述。体外结果表明,MZL-SLNs 具有长达 30 小时的持续释放曲线,符合非 Fickian Higuchi 动力学模型。稳定性研究证实,冻干的 MZL-SLNs(F4)在储存 6 个月后保持不变。最后,含有 MZL-SLNs 的水凝胶配方证明,在 24 小时后可使眼部充血消失,完全修复结膜。此外,与相同配方的后处理相比,用载有 MZL-SLNs 的水凝胶预处理可显著降低兔结膜中的 TNF-α 和 VEGF 表达水平。

结论:MZL-SLNs 可被视为一种有前途的稳定持续释放纳米颗粒系统,用于制备眼部水凝胶作为有效的抗过敏眼部给药系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/9a2e977da0db/IJN-16-7775-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/f17e76ed5a90/IJN-16-7775-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/f70b688ccdf1/IJN-16-7775-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/a3018d950f83/IJN-16-7775-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/205ee4e8a471/IJN-16-7775-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/aa26a92005ef/IJN-16-7775-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/eac63628d14b/IJN-16-7775-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/41eda1fa001a/IJN-16-7775-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/4264bcff2953/IJN-16-7775-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/2845e0e1f462/IJN-16-7775-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/f4f8f724ccf5/IJN-16-7775-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/c11f41693ce4/IJN-16-7775-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/9a2e977da0db/IJN-16-7775-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/f17e76ed5a90/IJN-16-7775-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/f70b688ccdf1/IJN-16-7775-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/a3018d950f83/IJN-16-7775-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/205ee4e8a471/IJN-16-7775-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/aa26a92005ef/IJN-16-7775-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/eac63628d14b/IJN-16-7775-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/41eda1fa001a/IJN-16-7775-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/4264bcff2953/IJN-16-7775-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/2845e0e1f462/IJN-16-7775-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/f4f8f724ccf5/IJN-16-7775-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/c11f41693ce4/IJN-16-7775-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f50/8627895/9a2e977da0db/IJN-16-7775-g0012.jpg

相似文献

[1]
Formulation and Pathohistological Study of Mizolastine-Solid Lipid Nanoparticles-Loaded Ocular Hydrogels.

Int J Nanomedicine. 2021

[2]
Benzocaine loaded solid lipid nanoparticles: Formulation design, in vitro and in vivo evaluation of local anesthetic effect.

Curr Drug Deliv. 2015

[3]
Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization.

Int J Nanomedicine. 2019-4-8

[4]
Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study.

Drug Deliv. 2018-11

[5]
Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery.

Colloids Surf B Biointerfaces. 2013-10-11

[6]
Preparation and Characterization of Tacrolimus-Loaded SLNs in situ Gel for Ocular Drug Delivery for the Treatment of Immune Conjunctivitis.

Drug Des Devel Ther. 2021

[7]
Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation.

Drug Deliv. 2016

[8]
Development and Optimization of Itraconazole-Loaded Solid Lipid Nanoparticles for Topical Administration Using High Shear Homogenization Process by Design of Experiments: In Vitro, Ex Vivo and In Vivo Evaluation.

AAPS PharmSciTech. 2021-10-13

[9]
Formulation of acyclovir-loaded solid lipid nanoparticles: design, optimization, and characterization.

Pharm Dev Technol. 2019-9-26

[10]
Design, characterization and in vivo performance of solid lipid nanoparticles (SLNs)-loaded mucoadhesive buccal tablets for efficient delivery of Lornoxicam in experimental inflammation.

Int J Pharm. 2022-8-25

引用本文的文献

[1]
Recent Achievements and Perspectives in Smart Nano-in-Micro Platforms for Ocular Disease Treatment.

Int J Nanomedicine. 2025-6-17

[2]
Biofunctional Excipients: Their Emerging Role in Overcoming the Inherent Poor Biopharmaceutical Characteristics of Drugs.

Pharmaceutics. 2025-5-1

[3]
Polymeric Mixed Micelle-Loaded Hydrogel for the Ocular Delivery of Fexofenadine for Treating Allergic Conjunctivitis.

Polymers (Basel). 2024-8-7

[4]
Sulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach.

Molecules. 2023-11-9

[5]
Phyllanthi Tannin Loaded Solid Lipid Nanoparticles for Lung Cancer Therapy: Preparation, Characterization, Pharmacodynamics and Safety Evaluation.

Molecules. 2023-11-2

[6]
Solid Lipid Nanoparticles Embedded Hydrogels as a Promising Carrier for Retarding Irritation of Leflunomide.

Gels. 2023-7-14

[7]
Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms.

Pharmaceuticals (Basel). 2023-3-22

[8]
Formulation and Evaluation of Pravastatin Sodium-Loaded PLGA Nanoparticles: In vitro-in vivo Studies Assessment.

Int J Nanomedicine. 2023

[9]
Immune modulating nanoparticles for the treatment of ocular diseases.

J Nanobiotechnology. 2022-11-24

[10]
Fabrication of nanostructured lipid carriers ocugel for enhancing Loratadine used in treatment of COVID-19 related symptoms: statistical optimization, , , and studies evaluation.

Drug Deliv. 2022-12

本文引用的文献

[1]
.

Mol Vis. 2020-7-26

[2]
Effects of combination of mizolastine and proteoglycan on chronic urticaria: a randomized controlled trial.

Arch Dermatol Res. 2019-8-27

[3]
Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution.

Int J Nanomedicine. 2019-7-18

[4]
Histamine-Induced Conjunctivitis and Breakdown of Blood-Tear Barrier in Dogs: A Model for Ocular Pharmacology and Therapeutics.

Front Pharmacol. 2019-7-9

[5]
Influence of NaCl Concentration on Bicelle-Mediated SLB Formation.

Langmuir. 2019-8-1

[6]
Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization.

Int J Nanomedicine. 2019-4-8

[7]
Solid lipid nanoparticles for ocular delivery of isoniazid: evaluation, proof of concept and in vivo safety & kinetics.

Nanomedicine (Lond). 2019-1-29

[8]
Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release.

Eur J Pharm Biopharm. 2018-10-27

[9]
Targeted Nanostructured Lipid Carrier for Brain Delivery of Artemisinin: Design, Preparation, Characterization, Optimization and Cell Toxicity.

J Pharm Pharm Sci. 2018

[10]
Novel chitosan-based solid-lipid nanoparticles to enhance the bio-residence of the miraculous phytochemical "Apocynin".

Eur J Pharm Sci. 2018-9-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索