文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载酮康唑固体脂质纳米粒增强抗真菌活性的研究:体外与体内研究。

Sulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach.

机构信息

Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan.

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

出版信息

Molecules. 2023 Nov 9;28(22):7508. doi: 10.3390/molecules28227508.


DOI:10.3390/molecules28227508
PMID:38005230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10672792/
Abstract

Solid lipid nanoparticles (SLNs) have the advantages of a cell-specific delivery and sustained release of hydrophobic drugs that can be exploited against infectious diseases. The topical delivery of hydrophobic drugs needs pharmaceutical strategies to enhance drug permeation, which is a challenge faced by conventional formulations containing a drug suspended in gel, creams or ointments. We report the fabrication and optimization of SLNs with sulconazole (SCZ) as a model hydrophobic drug and then a formulation of an SLN-based topical gel against fungal infections. The SLNs were optimized through excipients of glyceryl monostearate and Phospholipon 90 H as lipids and tween 20 as a surfactant for its size, drug entrapment and sustained release and resistance against aggregation. The SCZ-SLNs were physically characterized for their particle size (89.81 ± 2.64), polydispersity index (0.311 ± 0.07), zeta potential (-26.98 ± 1.19) and encapsulation efficiency (86.52 ± 0.53). The SCZ-SLNs showed sustained release of 85.29% drug at the 12 h timepoint. The TEM results demonstrated spherical morphology, while DSC, XRD and FTIR showed the compatibility of the drug inside SLNs. SCZ-SLNs were incorporated into a gel using carbopol and were further optimized for their rheological behavior, pH, homogeneity and spreadability on the skin. The antifungal activity against and was increased in comparison to a SCZ carbopol-based gel. In vivo antifungal activity in rabbits presented faster healing of skin fungal infections. The histopathological examination of the treated skin from rabbits presented restoration of the dermal architecture. In summary, the approach of formulating SLNs into a topical gel presented an advantageous drug delivery system against mycosis.

摘要

固体脂质纳米粒(SLNs)具有靶向递送和持续释放疏水性药物的优势,可用于治疗传染病。疏水性药物的局部递送需要药物策略来增强药物渗透,这是包含悬浮在凝胶、乳膏或软膏中的药物的常规制剂所面临的挑战。我们报告了以 sulconazole(SCZ)为模型疏水性药物的 SLNs 的制备和优化,然后报告了一种基于 SLN 的抗真菌感染局部凝胶制剂。通过将甘油单硬脂酸酯和 Phospholipon 90 H 作为脂质,吐温 20 作为表面活性剂,优化了 SLNs 的大小、药物包封率和缓释以及抗聚集性。对 SCZ-SLNs 的物理性质进行了表征,包括粒径(89.81 ± 2.64)、多分散指数(0.311 ± 0.07)、Zeta 电位(-26.98 ± 1.19)和包封效率(86.52 ± 0.53)。SCZ-SLNs 在 12 小时时表现出 85.29%的药物持续释放。TEM 结果表明为球形形态,而 DSC、XRD 和 FTIR 表明药物在 SLNs 内的相容性。将 SCZ-SLNs 掺入到含有 carbopol 的凝胶中,并进一步对其流变行为、pH 值、均匀性和在皮肤上的铺展性进行了优化。与基于 SCZ-carbopol 的凝胶相比,对 和 的抗真菌活性有所提高。与兔体皮肤真菌感染的体内抗真菌活性相比,愈合速度更快。对治疗后兔皮的组织病理学检查表明,真皮结构得到了恢复。总之,将 SLNs 制成局部凝胶的方法为治疗真菌病提供了一种有利的药物传递系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/5196f1fd5f1e/molecules-28-07508-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/e79b38a0647b/molecules-28-07508-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/d5418678845e/molecules-28-07508-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/b51bbcb2cb1b/molecules-28-07508-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/03158619948c/molecules-28-07508-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/454b49e7a578/molecules-28-07508-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/48c559241940/molecules-28-07508-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/c6dc97b93f4b/molecules-28-07508-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/ecf63e6ded65/molecules-28-07508-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/af4711828205/molecules-28-07508-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/5196f1fd5f1e/molecules-28-07508-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/e79b38a0647b/molecules-28-07508-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/d5418678845e/molecules-28-07508-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/b51bbcb2cb1b/molecules-28-07508-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/03158619948c/molecules-28-07508-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/454b49e7a578/molecules-28-07508-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/48c559241940/molecules-28-07508-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/c6dc97b93f4b/molecules-28-07508-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/ecf63e6ded65/molecules-28-07508-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/af4711828205/molecules-28-07508-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10672792/5196f1fd5f1e/molecules-28-07508-g010.jpg

相似文献

[1]
Sulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach.

Molecules. 2023-11-9

[2]
Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations.

Nanotechnology. 2014-2-14

[3]
Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study.

Drug Deliv. 2018-11

[4]
Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride.

Eur J Pharm Sci. 2013-4-2

[5]
Preparation of Terbinafin-Encapsulated Solid Lipid Nanoparticles Containing Antifungal Carbopol Hydrogel with Improved Efficacy: In Vitro, Ex Vivo and In Vivo Study.

Pharmaceutics. 2022-6-30

[6]
Influence of formulation variables on miconazole nitrate-loaded lipid based nanocarrier for topical delivery.

Colloids Surf B Biointerfaces. 2020-9

[7]
Topical Amphotericin B solid lipid nanoparticles: Design and development.

Colloids Surf B Biointerfaces. 2016-3-1

[8]
Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization.

Int J Nanomedicine. 2019-4-8

[9]
Solid lipid nanoparticles (SLNs) gels for topical delivery of aceclofenac in vitro and in vivo evaluation.

Curr Drug Deliv. 2013-12

[10]
Prolonged Skin Retention of Luliconazole from SLNs Based Topical Gel Formulation Contributing to Ameliorated Antifungal Activity.

AAPS PharmSciTech. 2024-10-1

引用本文的文献

[1]
Optimization of atorvastatin and quercetin-loaded solid lipid nanoparticles using Box-Behnken design.

Nanomedicine (Lond). 2024-7-14

[2]
Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations.

Pharmaceutics. 2024-6-16

[3]
Cannabidiol-Loaded Solid Lipid Nanoparticles Ameliorate the Inhibition of Proinflammatory Cytokines and Free Radicals in an In Vitro Inflammation-Induced Cell Model.

Int J Mol Sci. 2024-4-26

本文引用的文献

[1]
Improved anticancer efficacy of methyl pyropheophorbide-a-incorporated solid lipid nanoparticles in photodynamic therapy.

Sci Rep. 2023-5-6

[2]
Voriconazole Cyclodextrin Based Polymeric Nanobeads for Enhanced Solubility and Activity: In Vitro/In Vivo and Molecular Simulation Approach.

Pharmaceutics. 2023-1-24

[3]
Quality by Design Based Formulation of Xanthohumol Loaded Solid Lipid Nanoparticles with Improved Bioavailability and Anticancer Effect against PC-3 Cells.

Pharmaceutics. 2022-11-7

[4]
Preparation of Terbinafin-Encapsulated Solid Lipid Nanoparticles Containing Antifungal Carbopol Hydrogel with Improved Efficacy: In Vitro, Ex Vivo and In Vivo Study.

Pharmaceutics. 2022-6-30

[5]
Fabrication and Evaluation of Voriconazole Loaded Transethosomal Gel for Enhanced Antifungal and Antileishmanial Activity.

Molecules. 2022-5-23

[6]
Formulation and Pathohistological Study of Mizolastine-Solid Lipid Nanoparticles-Loaded Ocular Hydrogels.

Int J Nanomedicine. 2021

[7]
Development and Optimization of Itraconazole-Loaded Solid Lipid Nanoparticles for Topical Administration Using High Shear Homogenization Process by Design of Experiments: In Vitro, Ex Vivo and In Vivo Evaluation.

AAPS PharmSciTech. 2021-10-13

[8]
Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: and analyses.

Drug Dev Ind Pharm. 2021-3

[9]
Phytophospholipid Complex of Caffeic Acid: Development, In vitro Characterization, and In Vivo Investigation of Antihyperlipidemic and Hepatoprotective Action in Rats.

AAPS PharmSciTech. 2021-1-6

[10]
Drug Screening for Discovery of Broad-spectrum Agents for Soil-transmitted Nematodes.

Sci Rep. 2019-8-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索