Suppr超能文献

树木死亡率子模型驱动模拟的长期森林动态:评估从林分到全球尺度的15个模型。

Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale.

作者信息

Bugmann Harald, Seidl Rupert, Hartig Florian, Bohn Friedrich, Brůna Josef, Cailleret Maxime, François Louis, Heinke Jens, Henrot Alexandra-Jane, Hickler Thomas, Hülsmann Lisa, Huth Andreas, Jacquemin Ingrid, Kollas Chris, Lasch-Born Petra, Lexer Manfred J, Merganič Ján, Merganičová Katarína, Mette Tobias, Miranda Brian R, Nadal-Sala Daniel, Rammer Werner, Rammig Anja, Reineking Björn, Roedig Edna, Sabaté Santi, Steinkamp Jörg, Suckow Felicitas, Vacchiano Giorgio, Wild Jan, Xu Chonggang, Reyer Christopher P O

机构信息

Forest Ecology ETH Zürich Universitätstrasse 22 8092 Zürich Switzerland.

University of Natural Resources and Life Sciences (BOKU) Vienna Peter Jordan Straße 82 1190 Wien Austria.

出版信息

Ecosphere. 2019 Feb 20;10(2):e02616. doi: 10.1002/ecs2.2616. eCollection 2019 Feb.

Abstract

Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10-40% per century under current climate and 20-170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics.

摘要

模型对于评估在气候变化和管理实践影响下未来的森林动态至关重要,其中纳入了树木生长、死亡和更新的表征。关于死亡率子模型重要性的定量研究很少。我们评估了15个动态植被模型(DVM)在不同程度气候变化下对不同树木死亡率公式的敏感性。该模型集包括8个林分尺度的DVM、3个景观尺度的DVM以及4个通常应用于大陆到全球尺度的DVM。一些模型纳入了基于经验得出的死亡率模型,另一些基于实验数据,还有一些基于理论推理。每个DVM至少使用两种替代的死亡率子模型运行。根据经验时间序列数据评估模型行为,然后让模型经受不同的气候变化情景。大多数DVM与经验数据匹配得相当好,无论使用哪种死亡率子模型。然而,在过去数据上表现非常相似的死亡率子模型,在未来气候变化下往往会导致森林动态轨迹截然不同。大多数DVM对死亡率子模型具有高敏感性,在当前气候下,每世纪基部面积和茎数的偏差为10 - 40%,在气候变化下为20 - 170%。然而,给定DVM对气候变化情景的敏感性通常要低两到三倍。我们得出结论:(1)在评估森林对气候变化的响应时,死亡率是最不确定的过程之一;(2)需要更多数据以及对树木死亡率有更好的过程理解,以提高模拟未来森林动态的稳健性。我们的研究强调,在DVM中比较几种替代的死亡率公式,能为过程不确定性对模拟未来森林动态的影响提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f19/8609442/3e3265ec39c4/ECS2-10-e02616-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验