Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, Paris Lodron University of Salzburg, Austria.
Nanoscale. 2021 Dec 16;13(48):20508-20520. doi: 10.1039/d1nr05958k.
A detailed description of the changes that occur during the formation of protein corona represents a fundamental question in nanoscience, given that it not only impacts the behaviour of nanoparticles but also affects the bound proteins. Relevant questions include whether proteins selectively bind particles, whether a specific orientation is preferred for binding, and whether particle binding leads to a modulation of their 3D fold. For allergens, it is important to answer these questions given that all these effects can modify the allergenic response of atopic individuals. These potential impacts on the bound allergen are closely related to the specific properties of the involved nanoparticles. One important property influencing the formation of protein corona is the nanotopography of the particles. Herein, we studied the effect of nanoparticle porosity on allergen binding using mesoporous and non-porous SiO NPs. We investigated (i) the selectivity of allergen binding from a mixture such as crude pollen extract, (ii) whether allergen binding results in a preferred orientation, (iii) the influence of binding on the conformation of the allergen, and (iv) how the binding affects the allergenic response. Nanotopography was found to play a major role in the formation of protein corona, impacting the physicochemical and biological properties of the NP-bound allergen. The porosity of the surface of the SiO nanoparticles resulted in a higher binding capacity with pronounced selectivity for (preferentially) binding the major birch pollen allergen Bet v 1. Furthermore, the binding of Bet v 1 to the mesoporous rather than the non-porous SiO nanoparticles influenced the 3D fold of the protein, resulting in at least partial unfolding. Consequently, this conformational change influenced the allergenic response, as observed by mediator release assays employing the sera of patients and immune effector cells. For an in-depth understanding of the bio-nano interactions, the properties of the particles need to be considered not only regarding the identity and morphology of the material, but also their nanotopography, given that porosity may greatly influence the structure, and hence the biological behaviour of the bound proteins. Thus, thorough structural investigations upon the formation of protein corona are important when considering immunological outcomes, as particle binding can influence the allergenic response elicited by the bound allergen.
蛋白质冠形成过程中的详细描述是纳米科学中的一个基本问题,因为它不仅影响纳米粒子的行为,还影响结合的蛋白质。相关问题包括蛋白质是否选择性地结合粒子,结合是否优先于特定的取向,以及粒子结合是否导致其 3D 折叠的调制。对于过敏原,回答这些问题很重要,因为所有这些影响都可以改变过敏个体的过敏反应。这些对结合过敏原的潜在影响与涉及的纳米粒子的特定性质密切相关。影响蛋白质冠形成的一个重要性质是粒子的纳米拓扑结构。在此,我们使用介孔和非孔 SiO NPs 研究了纳米粒子孔隙率对过敏原结合的影响。我们研究了(i)从粗花粉提取物等混合物中过敏原结合的选择性,(ii)过敏原结合是否导致优先取向,(iii)结合对过敏原构象的影响,以及(iv)结合如何影响过敏反应。发现纳米拓扑结构在蛋白质冠形成中起着主要作用,影响 NP 结合过敏原的物理化学和生物学性质。SiO 纳米粒子表面的孔隙率导致更高的结合能力,并对(优先)结合主要桦树花粉过敏原 Bet v 1 表现出明显的选择性。此外,Bet v 1 与介孔而不是非孔 SiO 纳米粒子的结合影响了蛋白质的 3D 折叠,导致至少部分展开。因此,这种构象变化影响了过敏反应,如通过使用患者血清和免疫效应细胞进行介质释放测定所观察到的。为了深入了解生物-纳米相互作用,不仅需要考虑材料的身份和形态,还需要考虑粒子的性质,考虑到孔隙率可能会极大地影响结合蛋白质的结构和生物行为。因此,在考虑免疫结果时,当考虑免疫结果时,在形成蛋白质冠时进行彻底的结构研究非常重要,因为粒子结合会影响结合过敏原引发的过敏反应。